研究実績の概要 |
研究期間前半では、重い電子系を記述する典型的な模型の一つである周期アンダーソンモデルについて、磁気秩序状態を調べた。そのために、強磁性状態、反強磁性状態も含めたグッツヴィラー波動関数に対する変分モンテカルロ法のプログラムを開発した。そして、正方格子上のモデルの基底状態を調べ、ハーフフィルド (サイトあたりの電子数が2) の近傍では反強磁性状態が、ハーフフィルドから離れると強磁性状態が現れることが分かった。更にどちらの磁性相内でもフェルミ面の形状の変化するリフシッツ転移が起こることが分かった。そして、相転移点でのエネルギーの利得や有効質量の変化なども詳細に調べ、磁性相内のリフシッツ転移はどちらの場合でもf電子の遍歴-局在転移として理解できることを明らかにした。更に変分波動関数の改良も行い、これまで用いられてきた波動関数よりもエネルギーを大幅に低下させることに成功し、有効質量も大きくなることが分かった。 研究期間後半では、結晶場基底状態が非クラマース二重項になっている系の多極子秩序や超伝導を調べた。まず、非クラマース二重項を記述する3軌道模型を提案し、摂動論を用いて多極子相互作用を導いた。そして、多極子相互作用が格子構造に大きく依存することを見出した。最終年度は超伝導についての研究を行い、軌道の異方性に起因したd波の異方的超伝導状態が実現することが分かった。この超伝導状態では結晶の対称性が立方晶から低下して、四極子モーメントが誘起されると期待される。結晶場基底状態が非クラマース二重項であるプラセオジム化合物 PrT2X20 (T = Ir, Rh, X = Zn; T = Ti, V, X = Al) では、超伝導は多くの場合、四極子秩序相内で実現しており、本研究で得られた超伝導状態はそれらの実験結果と整合している。
|