• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 研究成果報告書

空間の別の空間上の多重度の研究

研究課題

  • PDF
研究課題/領域番号 15K13439
研究種目

挑戦的萌芽研究

配分区分基金
研究分野 幾何学
研究機関早稲田大学

研究代表者

谷山 公規  早稲田大学, 教育・総合科学学術院, 教授 (10247207)

研究期間 (年度) 2015-04-01 – 2018-03-31
キーワード多重度 / 結び目 / 空間グラフ
研究成果の概要

マグマ(X、・)に対して整数全体の集合ZからXへの写像aが右再帰列であるとは、a(n+2)=a(n)・a(n+1)が全ての整数nに対して成立することであるとする。また、aが左再帰列であるとは、a(n+2)=a(n+1)・a(n)が全ての整数nに対して成立することであるとする。例えばマグマ(X、・)を整数全体の集合Zが通常の加法に関してなす群(Z、+)とすれば、右再帰列と左再帰列は一致して、それはフィボナッチ型数列を負数番へ拡張したものである。いろいろなマグマや群やカンドルにおける右再帰列や左再帰列について考察した。また右再帰列や左再帰列がいつ全射になるかについても考察した。

自由記述の分野

幾何学

URL: 

公開日: 2019-03-29  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi