研究実績の概要 |
N-次元ユークリッド空間の有界領域Ωにおいて,次の半線形放物型方程式の斉次ディリクレ型境界値問題に対する時間周期問題: du/dt - △u + β(u) + G(x,t,u) = f(x,t), u(x,0) = u(x,T) の解の存在について研究した.ここで,β(u) は(多価)単調作用素,摂動項 G(x,t,u) は一価関数の連続性に集合値関数への拡張概念である,上半連続性(usc)及び下半連続性(lsc)を有する集合値関数.G(x,t,u) が通常の一価関数である時には,G(x,t,u) の u に関するソボレフ劣臨界増大条件のもとで,外力 f(x,t) が十分小さい時に,時間周期解の存在定理がよく知られているが,G が集合値関数の時には,G の u に関するソボレフ劣臨界増大度はもとより,一次以上の増大度条件の下でも,対応する結果は存在しなかった.本研究では,一気に G が一価の場合の最良な結果を,集合値関数の場合に拡張することに成功した. 本研究では (1)「β(u) が G(x,t,u) より優位である時には,大きな外力 f(x,t) に対して時間周期解が存在し」 (2) 「G(x,t,u) が β(u) より優位な時でも,外力 f(x,t) が十分小さければ,時間周期解が存在する」ことを示した. X を Ωx(0,T) 上の二乗可積分空間とし,X の元 h に対して,du/dt - △u + β(u) +h = f(x,t), u(x,0) = u(x,T) の解を u_h とするとき多価写像 Ψ: h →G(x,t,u_h) に対して,Kakutani-Ky Fan の不動点定理や Tolstonogov のselection 定理を経由したシャウダー型の不動点定理をΨに適用する事により時間周期解の存在を構成した.
|