研究課題/領域番号 |
15K14028
|
研究機関 | 横浜国立大学 |
研究代表者 |
菊本 統 横浜国立大学, 大学院都市イノベーション研究院, 准教授 (90508342)
|
研究分担者 |
棚橋 秀行 大同大学, 工学部, 教授 (00283234)
|
研究期間 (年度) |
2015-04-01 – 2017-03-31
|
キーワード | 非水溶性液体 / 不飽和地盤 / 数値解析 / 水-NAPL-空気3相系 / 特性曲線 / 土-水-NAPL-空気4相系 / 有限要素法 / 浸透・変形連成解析 |
研究実績の概要 |
難水溶性液体(NAPL)は土中で水や空気とは独立して存在し,土壌汚染を引き起こす.汚染は長い年月をかけて広範囲に拡がるため,原位置調査と数値計算を組み合わせた現況調査が効果的である.また,原位置浄化では間隙流体に圧力変化が生じて有効応力が変化し,地盤変形を生じる可能性がある.湾岸の汚染地盤は液状化により汚染物質が移動する可能性もある.よって,油汚染土壌の多相浸透と変形の解析的予測が重要になるが,土-水-NAPL-空気4相の変形・浸透連成問題の解析例はない.本研究ははじめてこの問題に挑戦した. 水-NAPL-空気3相の浸透問題では,有限要素解析での質量保存,計算速度と安定性に優れた新たな空間離散化を提案した.質量保存則の体積含水率の増分を線形近似した圧力型支配方程式では線形近似が原因で質量保存が満たされない.一方,線形近似しない混合型支配方程式の修正PicardとNewton-Raphsonでは体積含水率は形状関数で1次分布を仮定するため,その増分も1次分布となる.しかし空間離散化では体積含水率の増分は比水分容量と圧力増分を個別に形状関数で近似しているため2次分布となり整合性がない.そこで節点で比水分容量と圧力増分をかけ合わせてから形状関数で近似する整合性のある離散化により繰返し計算の収束速度と安定性を著しく改良した. さらに,土-水-NAPL-空気4相の変形・浸透連成有限要素法を構築した.3相特性曲線は代表者のモデルを使用した.間隙流体が水もしくはNAPLのみの単相流状態における線形弾性地盤の圧密解析では本定式化にによる結果とTerzaghiの圧密理論が一致し,理論的に解けていることを確認した.水とNAPLで飽和した線形弾性地盤の圧密解析では,初期NAPL 飽和度割合の違いにより圧密速度が単相流の時と比較して劇的に遅いことを確認した.
|