• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2016 年度 実績報告書

Real-time, Best-effort Query Processing of Semantic Web data

研究課題

研究課題/領域番号 15K15994
研究機関国立研究開発法人産業技術総合研究所

研究代表者

Lynden Steven  国立研究開発法人産業技術総合研究所, 人工知能研究センター, 研究員 (30528279)

研究期間 (年度) 2015-04-01 – 2017-03-31
キーワードLinked Open Data / Query Processing / Semantic Web / Web Data Integration
研究実績の概要

Further research has been performed into techniques to support efficient distributed query processing in two complementary directions.
Firstly, to optimize distributed querying over federated SPARQL endpoints, an investigation has been performed into the application of machine learning techniques to predict the behavior of SPARQL endpoints in terms of response time, and number of results returned. This can support efficient distributed query processing by providing query plan optimizers with estimations of response times prior to the execution of queries across multiple SPARQL endpoints. This has successfully been demonstrated by applying machine learning techniques such as Random Forest Regression and gradient boosting using SPARQL query logs for several endpoints deployed on the Web.
Secondly, techniques to support Linked Data queries over structured data (e.g. RDFa, Microdata, JSON-LD) embedded in Web pages have been developed. It has been demonstrated that machine learning can be utilised to predict the presence or absence of relevant structured data in Web pages using data from previously explored pages. The use of data mining techniques to automatically link knowledge bases such as DBpedia to structured data on the Web has also been demonstrated.

  • 研究成果

    (2件)

すべて 2016

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 謝辞記載あり 1件) 学会発表 (1件) (うち国際学会 1件)

  • [雑誌論文] Optimising Coverage, Freshness and Diversity in Live Exploration-based Linked Data Queries2016

    • 著者名/発表者名
      Steven Lynden, Makoto Yui, Akiyoshi Matono, Akihito Nakamura, Hirotaka Ogawa, Isao Kojima
    • 雑誌名

      Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics

      巻: 6 ページ: 1-12

    • DOI

      10.1145/2912845.2912859

    • 査読あり / 国際共著 / 謝辞記載あり
  • [学会発表] Optimising Coverage, Freshness and Diversity in Live Exploration-based Linked Data Queries2016

    • 著者名/発表者名
      Steven Lynden
    • 学会等名
      6th International Conference on Web Intelligence, Mining and Semantics
    • 発表場所
      Ecole des mines d'Ales, Nimes, France
    • 年月日
      2016-06-14 – 2016-06-14
    • 国際学会

URL: 

公開日: 2018-01-16  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi