• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2016 年度 実施状況報告書

A Study on Social Context Summarization

研究課題

研究課題/領域番号 15K16048
研究機関北陸先端科学技術大学院大学

研究代表者

NGUYEN MinhLe  北陸先端科学技術大学院大学, 先端科学技術研究科, 准教授 (30509401)

研究期間 (年度) 2015-04-01 – 2018-03-31
キーワードcomment extraction / sentence extraction / text summarization / contextual summarization / word representation / deep learning
研究実績の概要

In this fiscal year, we have achieved good results on social context summarization. Our work published in EICIR 2016 is extended and published in the journal. We developed SoRTESum to take the advantages of social information such as document content reflection to extract summary sentences and social messages. SoRTESum was extensively evaluated on two datasets which shows the state of the art performance. Another work is to present a summary model (SoCRFSum), which is formulated as a sequence labeling problem (CRFs), which exploits the support of external information to model sentences and comments. SoCRFSum was validated on a dataset collected from Yahoo News and show interesting results. We also report a summarization method named SoSVMRank, which integrates the social information of a Web document to generate a high-quality summarization.
Beside that, we have developed two corpora for social contextual summarization in both English and Vietnamese.
Along with research on deploying deep learning for text summarization, we would like to adapt our work by exploiting deep learning techniques. We propose a novel method for mapping a concept to a vector representation using Wiktionary sense definition. We have published an interesting work for turning SVM parameters using Genetic program and it is published in an international journal. This method can compare another models and it can help to turn parameters in SVM learning. This can be widely applied for many machine learning tasks including its applications in text summarization.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

In this year, we have successfully exploited social context summarization system and showed that our model attained the state of the art performance. We have reported our works on two journals and top conferences.

今後の研究の推進方策

In the future work, we will focus on multiple document in social contextual summarization and abstractive text summarization. We also would like to exploit deep learning models for social context summarization.
We will also consider the task of sentence compression when considering social context.

備考

A summarization sentence summarization system

  • 研究成果

    (10件)

すべて 2017 2016 その他

すべて 雑誌論文 (5件) (うち国際共著 4件、 査読あり 4件、 オープンアクセス 3件、 謝辞記載あり 4件) 学会発表 (4件) (うち国際学会 4件) 備考 (1件)

  • [雑誌論文] Feature weighting and SVM parameters optimization based on genetic algorithms for classification2017

    • 著者名/発表者名
      Anh Viet Phan,Minh Le Nguyen, Lam Thu Bui
    • 雑誌名

      Applied Intelligence

      巻: 46(2) ページ: 455-469

    • DOI

      10.1007/s10489-016-0843-6

    • 査読あり / オープンアクセス / 国際共著 / 謝辞記載あり
  • [雑誌論文] Intra-relation or Inter-relation?: Exploiting Social Information for Web Document Summarization2017

    • 著者名/発表者名
      Minh-Tien Nguyen and Minh-Le Nguyen
    • 雑誌名

      Expert Systems with Applications

      巻: 76 ページ: 71-84

    • DOI

      http://doi.org/10.1016/j.eswa.2017.01.023

    • 査読あり / 国際共著 / 謝辞記載あり
  • [雑誌論文] Building Lexical Vector Representations from Concept Definitions2017

    • 著者名/発表者名
      Danilo S. Carvaho and Minh Le Nguyen
    • 雑誌名

      Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics

      巻: 1 ページ: 905-8211

    • 査読あり / オープンアクセス / 国際共著 / 謝辞記載あり
  • [雑誌論文] SoLSCSum: A Linked Sentence-Comment Dataset for Social Context Summarization2016

    • 著者名/発表者名
      Minh-Tien Nguyen, Chien-Xuan Tran, Duc-Vu Tran, and Minh-Le Nguyen
    • 雑誌名

      In Proceedings of the 25th ACM International Conference on Information and Knowledge Management

      巻: 1 ページ: 2409-2412

    • DOI

      http://dx.doi.org/10.1145/2983323.2983376

    • 査読あり / オープンアクセス / 国際共著 / 謝辞記載あり
  • [雑誌論文] Learning to Summarize Web Documents using Social Information2016

    • 著者名/発表者名
      Minh-Tien Nguyen, Duc-Vu Tran, Chien-Xuan Tran, and Minh-Le Nguyen
    • 雑誌名

      IEEE 28th International Conference on Tools with Artificial Intelligence

      巻: 1 ページ: 619-626

    • DOI

      10.1109/ICTAI.2016.97

  • [学会発表] Building Lexical Vector Representations from Concept Definitions2017

    • 著者名/発表者名
      Danilo S. Carvaho
    • 学会等名
      the 15th Conference of the European Chapter of the Association for Computational Linguistics
    • 発表場所
      Valencia, Spain
    • 年月日
      2017-04-03 – 2017-04-07
    • 国際学会
  • [学会発表] VSoLSCSum: Building a Vietnamese Sentence-Comment Dataset for Social Context Summarization2016

    • 著者名/発表者名
      Nguyen Minh Tien
    • 学会等名
      The 12th Workshop on Asian Language Resources (held at COLING)
    • 発表場所
      Osaka International Convention Center, Osaka, Japan
    • 年月日
      2016-12-11 – 2016-12-16
    • 国際学会
  • [学会発表] Learning to Summarize Web Documents using Social Information2016

    • 著者名/発表者名
      Tran Duc Vu
    • 学会等名
      IEEE 28th International Conference on Tools with Artificial Intelligence
    • 発表場所
      San Jose, USA
    • 年月日
      2016-11-06 – 2016-11-08
    • 国際学会
  • [学会発表] SoLSCSum: A Linked Sentence-Comment Dataset for Social Context Summarization2016

    • 著者名/発表者名
      Minh Tien Nguyen
    • 学会等名
      The 25th ACM International Conference on Information and Knowledge Management
    • 発表場所
      Indianapolis, USA
    • 年月日
      2016-10-24 – 2016-10-28
    • 国際学会
  • [備考] Sentence summarization system

    • URL

      150.65.242.97/sum/en

URL: 

公開日: 2018-01-16  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi