• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2016 年度 実施状況報告書

偏微分方程式の逆問題のインバージョンに関する数学的厳密性と実用可能性の研究

研究課題

研究課題/領域番号 15K21766
研究機関北海道大学

研究代表者

中村 玄  北海道大学, 名誉教授 (50118535)

研究分担者 本多 尚文  北海道大学, 理学研究院, 教授 (00238817)
笹山 智司  北海道大学, 理学研究院, 学術研究員 (70431301)
研究期間 (年度) 2016 – 2018
キーワード線形サンプリング法 / 蛍光分子イメージング / インバージョン法 / 空洞同定 / 拡散方程式 / 熱流束
研究実績の概要

平成28年度の交付申請書の研究目的と実施計画として立案した次の2つの項目に対して集中的に研究することを計画した。即ち、(i)熱流束を用いたインピーダンスを持つ未知空洞同定に対する線形サンプリング型インバージョン法の指標関数の漸近挙動の研究、(ii)レーザーによるインパルス的熱流束が励起する熱伝導体表面の温度分布特性の知見獲得に必要な北海道大学蛍光分子イメージング研究グループとの研究協力。
それぞれの研究実績は次の通りである。
(i)については、指標関数の漸近挙動の導出と数値実験を行い、線形サンプリング型インバージョン法によるインピーダンスを持つ未知空洞同定が、極めて有効であるとの知見を得た。また、研究代表者が目指す動的探針法と線形サンプリン型インバージョン法を融合した新しいサンプリン型インバージョン法の樹立にむけて、次の様な数値実験研究を行った。即ち、線形サンプリング型インバージョン法に対して、計測時間を短くした場合、そして短い間隔をおいた2つの短い計測時間区間上での計測データを用いた場合について、インバージョンの有効性を検証し、その有効性を確認した。(ii)については、拡散方程式を用いた蛍光分子イメージングの光吸収率同定問題では、従来ロバン境界条件がインバージョンの一つの障害であった。そこでロバン境界条件をノイマン境界条件で近似するボルン型近似スキームを構築した。このボルン型近似のボルン級数は収束し、その各項は解析的表示を持つ。この結果は、鶏肉の光吸収率実データに対する同定実験データ解析に有効であると期待される。また、モンテカルロメトロポリスヘスティング法の蛍光分子イメージングへの適用についても検討した。

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

研究実績の概要の2つの項目に則して理由をのべる。項目(i)については、指標関数の漸近挙動の導出のみならず、線形サンプリング法の数値実験まで行うことができ、線形サンプリング型インバージョン法によるインピーダンスを持つ未知空洞同定の有効性が検証できた為である。項目(ii)については、研究の進展に伴い当初予定していなかったモンテカルロメトロポリスヘスティング法の蛍光分子イメージングへの適用についても検討できた為である。

今後の研究の推進方策

当該研究の研究テーマは、能動的サーモグラフィーとPVSのデータ解析である。平成28年度は能動的サーモグラフィー研究について集中的に研究し、当初計画以上に進展した。まだこの研究は一層の進展が見込まれるので、当面はこの研究を集中的に行って、数学的な厳密性と実用性を備えた能動的サーモグラフィーのインバージョン法として完成させたい。
PVSのデータ解析については、柱状サンプルの曲げ変形による第一ラーメ係数の同定法について研究する。

次年度使用額が生じた理由

研究分担者の分担金の執行管理が少し甘かったため、次年度使用額が若干額生じた。

次年度使用額の使用計画

研究代表者が現在使用中のパソコンが老朽化しているので、その更新費の一部として使用することを計画している。

  • 研究成果

    (10件)

すべて 2017 2016 その他

すべて 国際共同研究 (5件) 雑誌論文 (3件) (うち国際共著 3件、 査読あり 3件) 学会発表 (2件) (うち国際学会 2件、 招待講演 2件)

  • [国際共同研究] Rice Univ.(米国)

    • 国名
      米国
    • 外国機関名
      Rice Univ.
  • [国際共同研究] Southeast Univ.(中国)

    • 国名
      中国
    • 外国機関名
      Southeast Univ.
  • [国際共同研究] Inha Univ.(韓国)

    • 国名
      韓国
    • 外国機関名
      Inha Univ.
  • [国際共同研究] Natl. Cheng Kung Univ.(台湾)

    • 国名
      その他の国・地域
    • 外国機関名
      Natl. Cheng Kung Univ.
  • [国際共同研究] Grenoble Ales Univ.(フランス)

    • 国名
      フランス
    • 外国機関名
      Grenoble Ales Univ.
  • [雑誌論文] Reconstruction of Lame moduli and density at the boundary enabling directional elastic wavefield decomposition2017

    • 著者名/発表者名
      Maarten de Hoop, Gen Nakamura and Jian Zhai
    • 雑誌名

      SIAM J. Appl. Math.

      巻: 77 ページ: 520-536

    • 査読あり / 国際共著
  • [雑誌論文] Improved asymptotic analysis for dynamical probe method2016

    • 著者名/発表者名
      Y-G. Ji, K. Kim, G. Nakamura
    • 雑誌名

      Journal of Inverse and I11-posed Problems

      巻: 24 ページ: 489-498

    • 査読あり / 国際共著
  • [雑誌論文] Reconstruction of the shear modulus of viscoelastic systems in a thin cylinder : an inversion scheme and experiments2016

    • 著者名/発表者名
      J. Eom, H. Kang, G. Nakamura, Y-C. Wang
    • 雑誌名

      Inverse Problems

      巻: 32 ページ: 19

    • 査読あり / 国際共著
  • [学会発表] Identification of elasticity tensor by boundary measurements2017

    • 著者名/発表者名
      Gen Nakamura
    • 学会等名
      MATH+X Symp. on Seismology and Inverse Problems
    • 発表場所
      Rice Univ., Houston, U.S.A
    • 年月日
      2017-01-19
    • 国際学会 / 招待講演
  • [学会発表] Probe type method for acoustic wave equations with discontinuous coefficients2016

    • 著者名/発表者名
      Gen Nakamura
    • 学会等名
      Analysis and Numerics of Acoustic and Electromagnetic Problems
    • 発表場所
      RICAM, Linz, Austria
    • 年月日
      2016-10-20
    • 国際学会 / 招待講演

URL: 

公開日: 2018-01-18   更新日: 2022-02-22  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi