• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2004 年度 実績報告書

視覚入力から位置と向きの情報を分離する自己組織化モデルに関する研究

研究課題

研究課題/領域番号 16700232
研究機関独立行政法人情報通信研究機構

研究代表者

伊達 章  独立行政法人情報通信研究機構, 情報通信部門社会的インタラクショングループ, 研究員 (60322707)

キーワード情報分離 / 神経回路モデル / 自己組織化 / 情報表現 / ロボット視覚 / 顔画像処理 / ニューロコンピューティング / 自己組織化マップ
研究概要

本研究は,部屋の中を自由に動くロボットの視覚時系列信号から,ロボットの位置と向きの情報を分離抽出する自己組織化神経回路モデルの開発をおこなうことである,研究初年度たる平成16年度においては自己組織化モデルの特性を調べることを重点項目とした.その結果,次の3つの成果が得られた.
第一に,高次元信号空間に埋め込まれている低次元の本質的な構造を自動的に抽出する自己組織化モデルの開発をおこなった.問題は,画像という高次元の入力情報から,部屋の位置(2次元)と向き(1次元)という二つの情報を分離・抽出することである.現段階において,計算機シミュレーションではあるが,部屋の中を自由に動くロボットの視覚時系列信号から,ロボットの位置と向きの情報を分離して抽出することに成功した.
第二に,計算機シミュレーションで有効性を確認した上記の自己組織化モデルが実現する機能を,より少ない素子数で効率的に実現するモデルの開発にとりかかった.これは2層の神経場からなるモデルであり,入力信号空間と神経場間にはヘブ型の学習,神経場間には反ヘブ型の学習を仮定するモデルを用いた.このモデルを使った応用として,顔画像データから個人と表情という二つの情報を分離して抽出することに成功した.
第三に,同様のモデルを少し修正することにより,大脳皮質視覚野における複雑型細胞の反応選択性を説明することに成功した.これまでの研究では,視覚入力刺激の時間相関を利用することにより,複雑型細胞の反応選択性が説明されてきたが,我々は,複雑型細胞とそれに関係する二種類の細胞が表現する情報の間の相関関係を利用することにより,従来の説明とは異なる可能性を示した.
本神経回路モデルの自己組織(学習)のダイナミックスについては,どのような条件であれば学習が成功するのかはよく分っていない.より数理的な視点からこの点を解明すべく,現在解析手法などを検討中である

  • 研究成果

    (4件)

すべて 2005 2004

すべて 雑誌論文 (4件)

  • [雑誌論文] 情報分離による複雑型細胞受容野の自己組織的形成モデル2005

    • 著者名/発表者名
      伊達 章
    • 雑誌名

      電子情報通信学会論文誌 J87-D-II・2(印刷中)

  • [雑誌論文] 連続自己組織化マップによる表情と個人情報の分離2004

    • 著者名/発表者名
      伊達 章
    • 雑誌名

      画像の認識・理解シンポジウム(MIRU2004)論文集 1

      ページ: 613-617

  • [雑誌論文] An explanation of complex cell development by information separation2004

    • 著者名/発表者名
      Akira Date
    • 雑誌名

      Proceedings of the Third International Conference on Development and Learning 2(CDROM)

  • [雑誌論文] Complex cell development by the combination of Hebbian and anti-Hebbian learning rules : A computational model2004

    • 著者名/発表者名
      Akira Date
    • 雑誌名

      Society for Neuroscience Abstracts 30

      ページ: 866.10

URL: 

公開日: 2006-07-12   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi