• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2016 年度 実績報告書

非可換幾何学による物質のトポロジー相の解明

研究課題

研究課題/領域番号 16F16728
研究機関東北大学

研究代表者

小谷 元子  東北大学, 理学研究科, 教授 (50230024)

研究分担者 BOURNE CHRISTOPHER  東北大学, 理学研究科, 外国人特別研究員
研究期間 (年度) 2016-11-07 – 2019-03-31
キーワードTopological phases / operator algebras / Kasparov theory / aperiodic media
研究実績の概要

We have begun to study topological properties of materials with minimal assumptions on the structure of the material. In particular, we consider mathematical models of Delone sets, which mimic the atomic-lattice of many condensed matter materials at low temperature. In particular, we do not assume that the atomic-lattice is well-structured and may contain impurities and disorder. We have made progress on establishing a coherent mathematical framework that describes the topological phase of materials modelled by Delone sets as well as their corresponding edge/surface effects, though the work is ongoing.
We also attended the international workshop on ‘KK-Theory, Gauge Theory and Topological Phases’ at the Lorentz Center, Leiden University. The workshop helped clarify where the current gaps in knowledge are with regards to mathematical approaches to topological phases.
Lastly, funds were used to acquire necessary resources to effectively conduct our research. These resources included a computer and relevant reference books.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The project is still in its early stages having been started in November 2016, but currently we feel like we are on schedule to deliver the desired outcomes. We have identified the mathematical models we wish to consider (Delone sets) and have made progress in extracting topological information of relevance for physics.

今後の研究の推進方策

Having identified our model of interest, our plan is to develop the mathematical framework to describe the topological phase of Delone sets. Topological phases are often described using a mathematical construction called K-theory, though the relevant K-theory of Delone sets is still an area in development. Our intention for future work is as follows:
1.Understand how the symmetries of interest in topological insulators are realized and implemented in Delone sets.
2.How the symmetries of Delone sets are related to K-theory.
3.How edge/surface effects arise when we consider such topological phases, the bulk-boundary correspondence and its physical interpretation.
4.Potential applications to a wider class of materials than what often considered in the topological phases literature (e.g. quasicrystals). We consider this because Delone sets are capable of modelling a very large class of materials.

  • 研究成果

    (2件)

すべて 2017

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (1件) (うち国際学会 1件、 招待講演 1件)

  • [雑誌論文] The K-theoretic bulk-edge correspondence for topological insulators2017

    • 著者名/発表者名
      Chris Bourne, Johannes Kellendonk, Adam Rennie
    • 雑誌名

      Annales Henri Poincare

      巻: 18 (5) ページ: 1833 - 1866

    • DOI

      10.1007/s00023-016-0541-2

    • 査読あり / 国際共著
  • [学会発表] Index theory of aperiodic lattices and topological phases2017

    • 著者名/発表者名
      Christopher Bourne
    • 学会等名
      workshop on KK-theory, Gauge Theory and Topological Phases
    • 発表場所
      Lorentz Center, Leiden University,Netherlands
    • 年月日
      2017-03-09 – 2017-03-09
    • 国際学会 / 招待講演

URL: 

公開日: 2018-01-16  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi