研究課題/領域番号 |
16H04086
|
研究機関 | 名古屋大学 |
研究代表者 |
渡邉 智彦 名古屋大学, 理学研究科, 教授 (30260053)
|
研究分担者 |
前山 伸也 名古屋大学, 理学研究科, 助教 (70634252)
|
研究期間 (年度) |
2016-04-01 – 2021-03-31
|
キーワード | プラズマ / 乱流 / ジャイロ運動論 / シミュレーション |
研究実績の概要 |
本課題の研究目的は、高温磁化プラズマ中に普遍的に観測される電磁乱流揺らぎが、どのような経路を経て非可逆な散逸に至るか、その道程を明らかにし、位相空間上の散逸領域と慣性領域を理論的・数値的に特徴付けること、そこからエネルギー散逸の非等方性を明らかにすることである。さらに、その結果を敷衍し、乱流抑制や輸送の飽和機構の理解へと還元することを目指している。 平成28年度に開始した空間2次元・速度空間1次元の磁化プラズマ中での駆動型定常乱流におけるエントロピー・カスケードの問題について高解像度の解析に成功した。本研究で導入したランダムな駆動源によって、実空間だけでなく速度空間も含めた位相空間上に分布関数の微細揺動が発達し、有限の衝突散逸と釣り合った統計的な定常状態が実現された。1024^3自由度の大規模シミュレーションで得られた位相空間スペクトルは、従来の結果よりも強い非等方性を示している。 さらに5次元ジャイロ運動論的シミュレーション・コードGKVを用いた、トーラス型の磁場閉じ込め核融合プラズマにおける乱流輸送シミュレーションを様々なイオン温度勾配に対して系統的に実施した。ゾーナルフローが卓越する比較的弱いイオン温度勾配の場合、本研究で新たに定義したエントロピー伝達率と、ゾーナルフローによるせん断率がよい一致を示すことが見出された。 一方、昨年度行ったAlfven乱流の簡約化磁気流体シミュレーションについては、コードの並列化と高解像度化を進めるとともに、電子慣性効果を取り入れた新たなモデル化に着手した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
上記の概要にまとめたように、駆動型定常ジャイロ運動論的2次元乱流の高解像度シミュレーションに成功した。ジャイロ中心分布関数をフーリエ級数とラゲール多項式により展開して得られた位相空間スペクトルは、従来から指摘されてきたカスケード過程に加え、より強い非等方性を示している。エントロピー揺動伝達過程について今後より詳細な解析を行うとともに、新たな理論モデル構築に役立つ結果を得た。 イオン温度勾配乱流における混合過程の解析に部分空間エントロピー伝達解析の手法を援用し、ゾーナルフローによるせん断率との対応をより定量的に示すことができた。さらに、両者の対応関係のイオン温度勾配依存性を調査し、乱流輸送抑制との関連を明らかにした。 さらに、簡約化磁気流体モデルを用いたAlfven乱流について、そのスペクトル構造を調べるために並列化および高解像度化を行った。また、無衝突プラズマにおけるAlfven乱流で重要となる電子慣性効果のモデル化を開始した。 以上のように、本研究課題についてはほぼ計画通り、順調に進展している。
|
今後の研究の推進方策 |
平成30年度は、すでに得られた研究成果の学術雑誌への発表を順次進めるとともに、トロイダルプラズマにおけるエントロピー伝達の問題において新たな課題に取り組む。議論となる点としては、ゾーナルフローを介した連鎖的なエントロピー伝達過程における伝達率の定義とゾーナル流によるせん断率の対応、流体モーメント量との関連、さらに実空間3次元・速度空間1次元のイオン温度勾配乱流における平行方向カスケード過程と定常スペクトル構造の解明がある。Alfven乱流の問題については、電子慣性効果が乱流や平行電場形成に与える影響に関する非線形シミュレーション解析を行い、さらにその結果のオーロラ物理への展開をはかる。 以上について、得られた成果を順次、学会発表および論文投稿を行いながら、研究課題を推進する。
|