• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実績報告書

Conjectures associated with Brascamp-Lieb type inequalities

研究課題

研究課題/領域番号 16H05995
研究機関埼玉大学

研究代表者

BEZ NEAL  埼玉大学, 研究機構, 准教授 (30729843)

研究期間 (年度) 2016-04-01 – 2019-03-31
キーワードBrascamp-Lieb inequality / Schrodinger equation / Transport equation / Trace estimates
研究実績の概要

Progress has been made on understanding the Brascamp-Lieb inequality in the framework of Lorentz spaces. In particular, in joint work with Sanghyuk Lee, Shohei Nakamura and Yoshihiro Sawano, necessary conditions have been obtained which establish the sharpness of the range of possible Lorentz exponents in the so-called subcritical case. Sharpness of some related estimates for the kinetic transport equation has also been obtained by similar ideas. Continuing in this direction, in collaboration with Jayson Cunanan and Sanghyuk Lee, harmonic analysis techniques were used to establish smoothing estimates for the kinetic transport equation at a certain critical regularity, thus solving an open problem left open in earlier work on this research project.

Further results obtained on this research project this year include some novel space-time estimates for the Schrodinger equation involving the X-ray transform; this is joint work with Jonathan Bennett, Taryn Flock, Susana Gutierrez and Marina Iliopoulou. In a further joint work with Jonathan Bennett, we develop a new perspective on the so-called heat-flow monotonicity method in the context of geometric inequalities, including the Brascamp-Lieb inequality and hypercontractivity. Also in the context of geometric inequalities, in joint work with Chris Jeavons, Tohru Ozawa and Mitsuru Sugimoto, new results on the trace theorem on the sphere have been obtained.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

Substantial progress has been obtained towards the main goal of the original proposal of this research project, the nonlinear Brascamp-Lieb conjecture, and it is anticipated that this part of the project will reach completion soon. Furthermore, unexpectedly good progress has been made on new lines of research inspired by the original research goals. This includes new perspectives on delicate boundedness properties of the solutions to the Schrodinger and the kinetic transport equations. Developments have also been made on geometric estimates, such as the fundamental trace estimate on the sphere, where a new understanding of the stability of the estimate and properties of its near-extremisers has been reached.

今後の研究の推進方策

The main purpose is to establish the nonlinear Brascamp-Lieb conjecture in full generality. In some work in progress, partial breakthroughs have already been made in the so-called subcritical case. A major goal of this research project is to establish the conjecture in all cases and thus complete the essential part of the first programme of the original research application. Once the conjecture has been verified, efforts will be made to apply the theory in various directions, including PDE and euclidean harmonic analysis.

In a different line of development, it is also planned to utilise harmonic analysis techniques to make novel contributions to the recently emerging theory of Strichartz estimates for orthonormal systems of data.

  • 研究成果

    (9件)

すべて 2018 2017

すべて 雑誌論文 (5件) (うち国際共著 5件、 査読あり 5件、 オープンアクセス 1件) 学会発表 (4件) (うち国際学会 4件、 招待講演 4件)

  • [雑誌論文] Stability of Trace Theorems on the Sphere2018

    • 著者名/発表者名
      Neal Bez, Chris Jeavons, Tohru Ozawa, Mitsuru Sugimoto
    • 雑誌名

      The Journal of Geometric Analysis

      巻: 28 ページ: 1456-1476

    • DOI

      10.1007/s12220-017-9870-8

    • 査読あり / 国際共著
  • [雑誌論文] Smoothing Estimates for the Kinetic Transport Equation at the Critical Regularity2018

    • 著者名/発表者名
      Neal Bez, Jayson Cunanan, Sanghyuk Lee
    • 雑誌名

      SIAM Journal on Mathematical Analysis

      巻: 50 ページ: 2280-2294

    • DOI

      10.1137/17M1148852

    • 査読あり / 国際共著
  • [雑誌論文] A sharp k-plane Strichartz inequality for the Schrodinger equation2018

    • 著者名/発表者名
      Jonathan Bennett, Neal Bez, Taryn Flock, Susana Gutierrez, Marina Iliopoulou
    • 雑誌名

      Transactions of the American Mathematical Society

      巻: - ページ: -

    • DOI

      10.1090/tran/7309

    • 査読あり / 国際共著
  • [雑誌論文] Generating monotone quantities for the heat equation2018

    • 著者名/発表者名
      Jonathan Bennett, Neal Bez
    • 雑誌名

      Journal fur die reine und angewandte Mathematik

      巻: - ページ: -

    • DOI

      10.1515/crelle-2017-0025

    • 査読あり / 国際共著
  • [雑誌論文] Sharpness of the Brascamp--Lieb inequality in Lorentz spaces2017

    • 著者名/発表者名
      Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano
    • 雑誌名

      Electronic Research Announcements in Mathematical Sciences

      巻: 24 ページ: 53-63

    • DOI

      10.3934/era.2017.24.006

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Multilinear restriction and Kakeya estimates2017

    • 著者名/発表者名
      Neal Bez
    • 学会等名
      Yonsei University Analysis Seminar
    • 国際学会 / 招待講演
  • [学会発表] On the kinetic transport equation2017

    • 著者名/発表者名
      Neal Bez
    • 学会等名
      Harmonic Analysis and its Interactions: in Honour of Tony Carbery
    • 国際学会 / 招待講演
  • [学会発表] Strichartz estimates for orthonormal systems of initial data2017

    • 著者名/発表者名
      Neal Bez
    • 学会等名
      Nonlinear Partial Differential Equations for Future Applications: Hyperbolic and Dispersive PDE
    • 国際学会 / 招待講演
  • [学会発表] Multilinear inequalities in harmonic and geometric analysis2017

    • 著者名/発表者名
      Neal Bez
    • 学会等名
      Topics in Harmonic Analysis: Intensive Lecture Series
    • 国際学会 / 招待講演

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi