• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2016 年度 実績報告書

Inversion and prediction problems in anomalous diffusion

研究課題

研究課題/領域番号 16H06712
研究機関東京大学

研究代表者

李 志遠  東京大学, 大学院数理科学研究科, 特任研究員 (00782450)

研究期間 (年度) 2016-08-26 – 2018-03-31
キーワードanomalous diffusion / inverse problems / Carleman estimates
研究実績の概要

The Carleman estimates (CE) for the generalized time-fractional diffusion equations (TFDEs) were investigated. First, in the case of sub-diffusion, say, the largest fractional order is strictly less than 1/2, the CE for the TFDE was established by regarding fractional order terms as perturbation of the first order time-derivative, from which we further verified that a conditional stability for a lateral Cauchy problem. In the case of sup-diffusion where the largest order is rational number and less than 3/4, the CE for the TFDE was constructed. As an application, the conditional stability for an inverse source problem was proved as well as the stability for the lateral Cauchy problem. The fractional order 3/4 is the largest one which one can deal with based on the arguments of CE.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The Carleman estimates (CE) for the generalized time-fractional diffusion equations (TFDEs) were established in the following two cases:
1. the largest fractional order is strictly less than 1/2.
2. the largest order is rational number and less than 3/4.
The main idea is regarding the fractional order term as a perturbation of the first order time-derivative, which enables one to derive the Carleman estimate for the generalized time-fractional diffusion equations (TFDEs) in the framework of the Carleman estimate for the parabolic equations. Here it should be mentioned that the argument used in dealing with the above two cases cannot work for the general order case, and the fractional order 3/4 is the largest one which one can deal with based on the arguments of CE.

今後の研究の推進方策

Because of no integration by parts in fractional calculus, it is not easy to follow the usual way to derive the Carleman estimates (CE) for time-fractional diffusion equations (TFDEs). The main idea I used is regarding the TFDE as a parabolic type equation by considering fractional order terms as a perturbation to the time-derivative. The CE for the TFDE heavily relies on CE for parabolic case. Especially, the fractional order 3/4 is the sharp case one can deal with is a direct conclusion by noting the powers of parameters in CE for parabolic equations. In the case where the fractional orders are irrational numbers between 1/2 and 3/4 or real numbers greater than 3/4, there are two possible ways:
1. Modifying the CE for parabolic equations
2. Using theory of pseudo-differential operators instead of integration by parts to derive the CE for TFDE.

  • 研究成果

    (7件)

すべて 2017 2016

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 1件、 謝辞記載あり 2件、 オープンアクセス 1件) 学会発表 (5件) (うち国際学会 1件、 招待講演 5件)

  • [雑誌論文] Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations2017

    • 著者名/発表者名
      Daijun Jiang, Zhiyuan Li, Yikan Liu and Masahiro Yamamoto
    • 雑誌名

      Inverse Problems

      巻: 33 ページ: 印刷中

    • 査読あり / 国際共著 / 謝辞記載あり
  • [雑誌論文] Carleman estimates for the time-fractional advection-diffusion equations and applications2017

    • 著者名/発表者名
      Zhiyuan Li, Xinchi Huang and Masahiro Yamamoto
    • 雑誌名

      arXiv preprint

      巻: - ページ: -

    • オープンアクセス / 国際共著 / 謝辞記載あり
  • [学会発表] Mathematical analysis for diffusion equations with generalized fractional time derivatives2017

    • 著者名/発表者名
      Zhiyuan Li
    • 学会等名
      -
    • 発表場所
      University of Sciences and Technology of China (Hefei, China)
    • 年月日
      2017-04-05 – 2017-04-05
    • 招待講演
  • [学会発表] A survey on inverse problems for time-fractional diffusion equations2017

    • 著者名/発表者名
      Zhiyuan Li
    • 学会等名
      -
    • 発表場所
      Hohai University (Nanjing, China)
    • 年月日
      2017-03-20 – 2017-03-20
    • 招待講演
  • [学会発表] Carleman estimates for the time-fractional diffusion equations and applications2017

    • 著者名/発表者名
      Zhiyuan Li
    • 学会等名
      偏微分方程式の逆問題とその周辺
    • 発表場所
      京都大学数理解析研究所
    • 年月日
      2017-01-25 – 2017-01-27
    • 国際学会 / 招待講演
  • [学会発表] A survey on weak unique continuation for the time-fractional diffusion equations2016

    • 著者名/発表者名
      Zhiyuan Li
    • 学会等名
      -
    • 発表場所
      Shandong University of Technology (Zibo, China)
    • 年月日
      2016-10-27 – 2016-10-27
    • 招待講演
  • [学会発表] Forward and inverse problems for the time-fractional diffusion equations2016

    • 著者名/発表者名
      Zhiyuan Li
    • 学会等名
      -
    • 発表場所
      Shandong University of Technology (Zibo, China)
    • 年月日
      2016-10-26 – 2016-10-26
    • 招待講演

URL: 

公開日: 2018-01-16  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi