研究課題/領域番号 |
16H07287
|
研究機関 | 早稲田大学 |
研究代表者 |
三宅 丈雄 早稲田大学, 理工学術院(情報生産システム研究科・センター), 准教授 (50551529)
|
研究期間 (年度) |
2016-08-26 – 2018-03-31
|
キーワード | 酵素電極 / バイオ発電 / イオン制御 / 創傷治癒 |
研究実績の概要 |
本申請では,バイオ燃料電池の仕組みと柔らかいハイドロゲル表面への電極印刷技術とを組み合わせてヒトと馴染む通電式治療シートを実現し,電気仕掛けで創傷治療をおこなう“電気絆創膏”を創出するチャレンジを試みる.新規デバイスの研究計画は,平成28年度において,各素子の基本性能を向上させ(ハイドロゲル表面上に印刷された導電性高分子配線の電気伝導度および貼るタイプの酵素フィルムのバイオ発電性能),平成29年度には,各素子を有機的に統合させた電気治療デバイスの開発およびその基礎評価をおこなう予定である.電気治療デバイスの設計においては,皮膚への通電を日本工業規格(JIS)が定めた上限(10 mA)以下とし,かつ,皮膚の炎症を引き起こさない電流密度(0.5 mA/cm2)を用いる医療機器特有の規格を設ける予定である.また,研究の進捗状況によっては動物実験による治療効果を確認することで本研究を完成させたいと考えている. 本年度は,各素子の性能向上と創傷治癒促進デバイス“電気絆創膏”の開発を完成させた.具体的には,申請者独自の技術であるハイドロゲル表面への導電性高分子配線の印刷および貼るタイプの酵素フィルムの性能改善に取り組んだ.さらに,イオンの絶縁や生体素材の失活抑制などウェット材料特有のパッケージング技術に関しても取り組んだ.さらに,各パーツの接合技術に取り組んだ.ハイドロゲル電極配線と酵素フィルムを導通させるため,電解重合を利用した導電接着技術に取り組み,さらにバイオ燃料を含んだハイドロゲル上で化学エネルギーを電気エネルギーに変換させる燃料一体型発電フィルムを完成させた.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
2年間で4項目の研究計画を立てたが,本年度にて2項目は達成し,3項目目にも取り掛かることが出来た.実績概要と重複するが,各素子の性能向上と創傷治癒促進デバイス“電気絆創膏”の開発を完成させた.具体的には,申請者独自の技術であるハイドロゲル表面への導電性高分子配線の印刷および貼るタイプの酵素フィルムの性能改善に取り組んだ.さらに,イオンの絶縁や生体素材の失活抑制などウェット材料特有のパッケージング技術に関しても取り組んだ.さらに,各パーツの接合技術に取り組んだ.ハイドロゲル電極配線と酵素フィルムを導通させるため,電解重合を利用した導電接着技術に取り組み,さらにバイオ燃料を含んだハイドロゲル上で化学エネルギーを電気エネルギーに変換させる燃料一体型発電フィルムを完成させた.以上のことから,本研究はおおむね順調に進んでいると考えられ,最終年度の研究課題達成に向け着実に進んでいる.
|
今後の研究の推進方策 |
平成29年度には,各素子を有機的に統合させた電気治療デバイスの開発および本デバイスを用いて創傷治癒に関する応用に取り組む.具体的には,皮膚細胞の電気走性を評価する.本電気絆創膏では,デバイス側から皮膚へイオン的導通を伴いながら傷口付近の皮膚細胞の遊走を制御する仕組みであるため,傷口の血糖を用いたバイオ発電によって細胞が電気走性する様子をIn vitroで評価する.細胞ディッシュ上に培養した表皮細胞の単独および集団での遊走を観察し,動物実験に向けたイオン電流値を見積もる予定である.その際,バイオ発電シートとマイクロ流路システムを組み合わせることで,培養液を直接燃料として用いる電気培養皿を開発する予定である.電源が組み込まれた培養ディッシュは,これまで存在しなかったので,細胞培養分野への新たなツールを提供できるのではないかと考えている.さらに,電気絆創膏を用いた動物実験にも取り組む.マウスの皮膚,あるいは,ウサギの角膜など上皮組織の治癒が電気で促進されるかどうかを評価する予定である.実際の皮膚にデバイスを取り付ける際,市販のメディカルテープ(Nexcare 3M)を用いることで,バイオ発電の性能を向上させる大気中酸素の直接利用に加え,ゲルの水分蒸発を抑制する効果が得られると期待している.
|