• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実績報告書

ウイルスゲノムの特徴量解析と自然宿主推定への応用

研究課題

研究課題/領域番号 16J02715
研究機関北海道大学

研究代表者

Tessmer Heidi Lynn  北海道大学, 獣医学研究科, 特別研究員(DC2)

研究期間 (年度) 2016-04-22 – 2018-03-31
キーワード機械学習 / 感染症 / 基本再生産数
研究実績の概要

I continued my research into machine learning, including server maintenance and optimization, learning and using different ML libraries, attending conferences, and exploring the latest papers, tutorials, and industry standards.
Two co-authored papers:
- Tessmer HL, Ito K, and Omori R. Can machines learn respiratory virus epidemiology?: A comparative study of likelihood-free methods for the estimation of epidemiological dynamics.
- Sakon N, Komano J, Tessmer HL, and Omori R. High transmissibility of norovirus among infants and school children during the 2016/17 season in Osaka, Japan.
Abstract: To estimate and predict the transmission dynamics of respiratory viruses, the estimation of the basic reproduction number, R0, is essential. Recently, approximate Bayesian computation methods have been used as likelihood free methods to estimate epidemiological model parameters, particularly R0. In this paper, we explore various machine learning approaches, the multi-layer perceptron, convolutional neural network, and long-short term memory, to learn and estimate the parameters. Further, we compare the accuracy of the estimates and time requirements for machine learning and the approximate Bayesian computation methods on both simulated and real-world epidemiological data from outbreaks of influenza A(H1N1)pdm09, mumps, and measles. We find that the machine learning approaches can be verified and tested faster than the approximate Bayesian computation method, but that the approximate Bayesian computation method is more robust across different datasets.

現在までの達成度 (段落)

29年度が最終年度であるため、記入しない。

今後の研究の推進方策

29年度が最終年度であるため、記入しない。

  • 研究成果

    (2件)

すべて 2018

すべて 雑誌論文 (2件) (うち査読あり 2件、 オープンアクセス 2件)

  • [雑誌論文] Can Machines Learn Respiratory Virus Epidemiology?: A Comparative Study of Likelihood-Free Methods for the Estimation of Epidemiological Dynamics2018

    • 著者名/発表者名
      Tessmer Heidi L.、Ito Kimihito、Omori Ryosuke
    • 雑誌名

      Frontiers in Microbiology

      巻: 9 ページ: 343

    • DOI

      10.3389/fmicb.2018.00343

    • 査読あり / オープンアクセス
  • [雑誌論文] High transmissibility of norovirus among infants and school children during the 2016/17 season in Osaka, Japan2018

    • 著者名/発表者名
      Sakon Naomi、Komano Jun、Tessmer Heidi L.、Omori Ryosuke
    • 雑誌名

      Eurosurveillance

      巻: 23 ページ: 29

    • DOI

      10.2807/1560-7917.ES.2018.23.6.18-00029

    • 査読あり / オープンアクセス

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi