• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実績報告書

ブリルアン光相関領域リフレクトメトリの性能向上と温度と歪の同時・分離・分布測定

研究課題

研究課題/領域番号 16J05910
研究機関東京大学

研究代表者

YAO YUGUO  東京大学, 先端科学技術研究センター, 特別研究員(PD)

研究期間 (年度) 2016-04-22 – 2018-03-31
キーワードBrillouin scattering / signal processing / machine learning / BOCDA/BOCDR
研究実績の概要

We propose the signal processing based on machine learning in Brillouin optical correlation domain analysis/ reflectometry (BOCDA/R) for the first time. The implementation of the neural network method is described. However, other machine learning methods are also thought to be adaptive in this signal process, such as the support vector machine.
Machine learning is a fashionable and also promising method that has been applied in many fields, such bio-imaging. Different from the conventional signal processing methods, machine learning infers a reasonable model from massive data that are used to train the model, and shows great power at handling the information when the physical law is no clear or when the law is difficult to achieve from induction.
By introducing the machine learning, the performance of BOCDA/R is expected to be more robust. Also, the speed of signal processing in BOCDA/R is expected to increase without deteriorating the measurement accuracy, if a good model is trained by the training data.
The future work will focus on the collection of the big data in the real experiment, and the debugging of the algorithm. By introducing the machine learning into the BOCDA/R, it is expected that the system performances will be more reliable and precise, and the repeatability issue which has been bothering the researchers will be conquered.

現在までの達成度 (段落)

29年度が最終年度であるため、記入しない。

今後の研究の推進方策

29年度が最終年度であるため、記入しない。

  • 研究成果

    (1件)

すべて 2017

すべて 学会発表 (1件) (うち国際学会 1件)

  • [学会発表] Proposal of signal processing based on machine learning in Brillouin optical correlation domain analysis/ reflectometry2017

    • 著者名/発表者名
      Sze Y. Set
    • 学会等名
      22nd Microoptics Conference (MOC)
    • 国際学会

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi