部分的な構造情報である二次構造プロファイルを弱レベル学習データとして利用可能とする機械学習アルゴリズムを開発し,既存手法よりも精密な二次構造モデルを大量の二次構造プロファイルから学習することによって,過学習を回避しつつRNA二次構造予測の精度向上を目指す.まず,既存のTurner熱力学モデルに基づく自由エネルギー最小化法と構造化SVMによるパラメータ学習法を融合することによってより頑健かつ高精度なRNA二次構造予測手法の開発を行った.計算機実験の結果,既存の手法に見られる過学習は観測されず,予測精度の向上が確認された.
|