研究課題/領域番号 |
16K00417
|
研究機関 | 北見工業大学 |
研究代表者 |
前田 康成 北見工業大学, 工学部, 教授 (30422033)
|
研究分担者 |
堀井 俊佑 早稲田大学, グローバルエデュケーションセンター, 准教授(任期付) (00552150)
松嶋 敏泰 早稲田大学, 理工学術院, 教授 (30219430)
|
研究期間 (年度) |
2016-04-01 – 2019-03-31
|
キーワード | 商品推薦システム / 顧客クラス / マルコフ連鎖 / マルコフ決定過程 / 統計的決定理論 / ベイズ基準 / 動的計画法 |
研究実績の概要 |
従来から商品推薦システムでは、同じクラスに属する顧客は同様の商品を購入すると仮定して、顧客や商品の類似度に関する分析結果を商品の推薦に利用している。本課題では、顧客や商品の類似度に関する分析を空間的分析と呼んでいる。 また、商品を推薦する本来の目的は売上高の最大化であり、目的を達成するためには商品の推薦と推薦後の顧客の行動(購入/未購入)を時間軸でとらえて分析し、顧客を購買行動へ誘導するような商品を推薦する必要がある。本課題では、このような顧客の誘導を時間的制御と呼んでいる。 本課題では、空間的分析と時間的制御を融合した商品推薦問題において、マルコフ決定過程を用いて定式化し、売上高を最大化する次世代商品推薦システムのための基礎理論を構築することを目的としている。 今年度は従来技術に関する調査・分析を実施後に、顧客が属するクラスが時間の経過に伴って変化するような顧客クラスのモデルをマルコフ連鎖によって表現した。従来から検討されているマルコフ決定過程による顧客への推薦と顧客による購買を表現したモデルに、マルコフ連鎖による顧客クラスのモデルを加味して拡張することにより、空間的分析と時間的制御の融合を試みた。顧客のクラス変化を考慮した拡張モデルにおける顧客の所属クラスが未知という問題設定に対して、売上高をベイズ基準のもとで最大化する定式化を行い、実際にベイズ最適な推薦商品を算出する動的計画法を用いた提案アルゴリズムを導出した。さらに、数値計算例によって提案アルゴリズムの検証も行い、その有効性を確認した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
1: 当初の計画以上に進展している
理由
実施計画では平成28年度は空間的分析と時間的制御を融合させた商品推薦問題の定式化を行うこととし、平成29年度の実施計画として空間的分析方法の提案と空間的分析と時間的制御を融合させた商品推薦方法の提案を挙げ、平成30年度の実施計画として提案方法の検証を挙げていた。 平成28年度の実績は上記のとおり、顧客のクラス変化を考慮した拡張モデルにおける顧客の所属クラスが未知という問題設定に対して、売上高をベイズ基準のもとで最大化する定式化を行い、実際にベイズ最適な推薦商品を算出する動的計画法を用いた提案アルゴリズムを導出した。さらに、数値計算例によって提案アルゴリズムの検証も行い、その有効性を確認した。 このように平成28年度の実績は、平成29年度以降の実施計画の一部を包含している。よって、進捗としては当初計画以上に進展していると判断する。
|
今後の研究の推進方策 |
平成28年度には、従来技術の調査・分析後に、顧客のクラス変化を考慮した拡張モデルにおける顧客の所属クラスが未知という問題設定のもとで検討を進め、定式化・提案アルゴリズムの導出・検証をおこなった。 平成28年度の検討結果より、何も事前情報がない新規顧客に関する情報を当該顧客から入手するための新規顧客問題、利用する各種確率モデルの真のパラメータが未知の場合の機械学習問題など、検討すべき課題が多々存在することも明らかになった。 そこで、本研究課題の今後の推進方策としては、検討の必要性が明らかになった新規顧客問題などを加味した空間的分析と時間的制御を融合させた商品推薦方法に関する定式化・提案アルゴリズムの導出・検証を進めていきたい。
|
次年度使用額が生じた理由 |
研究代表者が潰瘍性大腸炎を発症・悪化させ、平成28年9月~12月の間、入院したために当初平成28年度に予定していた計算機の購入を平成28年度中に実施できなかったことが次年度使用額が生じた主な理由である。
|
次年度使用額の使用計画 |
当初平成28年度に予定していた計算機の購入を平成29年度に実施することを計画している。
|