• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実施状況報告書

整形外科手術前計画に役立つ紙ベースのラピッドプロトタイピングシステムの開発

研究課題

研究課題/領域番号 16K01422
研究機関明治大学

研究代表者

ディアゴ ルイス・アリエル  明治大学, 研究・知財戦略機構, 研究推進員 (20467020)

研究分担者 篠田 淳一  明治大学, 研究・知財戦略機構, 研究推進員 (60266880)
研究期間 (年度) 2016-04-01 – 2019-03-31
キーワードorigami engineering / medical robotics / deep neural networks / orthopedic surgery / surgery planning
研究実績の概要

This year focused on the development of a paper-folding machine. Previous prototype (LEGO-based) was redesigned (under construction) using optical sensors, step motors and a PSoc4 kit to eliminate errors (backslash) detected with LEGO motors. The algorithms ware re-programmed with the PSoC4 kit to create a pattern from a 3D object that can be represented by a surface in revolution (SR). The method was presented at national [11-DD, 2-JSST] and international conferences [5-ASME, 13-ICMMA], mass media [15-NHK, 16-TokyoTV] and published in proceedings [1-ASME, 2-JSST]. However, as SR cannot represent the bones accurately the method was extended to create patterns of 3D objects that fulfil the condition that their axial projections in 2d are star-based polygons. Additionally we improved the algorithms for 3D reconstruction of X-ray images and developed machine-learning algorithms based on deep neural networks (DNN) to recognize different scenes (e.g. folding, gluing, sharpening) of an origami process. XVIS toolbox was used to generate a large amount of x-ray images from a bone database and evaluate reconstructed 3D models objectively. In addition to origami videos, we worked with complex time series such as car scenes, facial expressions and data from patients with diabetes. DNNs were applied for autonomous driving, kansei evaluation and predicting human behavior in combination with fuzzy and rough sets. The papers were also presented at national [3-jsst, 6-CMD, 7-CMD, 8-CMD, 9-JSST, 14-Meiji-Marianna] and international conferences [4-ISFUROS, 12-ICMMA].

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

It was possible to extend the method developed for complex forms such as bones and to design a machine (currently under construction) independent of LEGO technology. It was also possible to train a convolutional neuronal network (i.e. deep learning) to recognize different scenes from video sequences(at present the accuracy in the prediction of the scenes is around 80%).

今後の研究の推進方策

As originally planned, in the following year we will work on two fundamental lines: 1) Generalization of the method to more complex forms and 2) Adaptation of the system to clinical conditions

1) Generalization of the method to more complex forms: Although the developed method can work with complex forms such as bones, it is necessary to develop a segmentation algorithm of the 3D models so that all the parts to be represented in the pattern comply with the condition that their projections in 2d are "star-based polygons" and also that the number of bends and areas of bonding are minimal.

2) Adaptation of the system to the clinical conditions: For the introduction of the system in the clinic it is necessary to develop a prototype of software that allows to create 3D models from X-ray images in an optimal way, by means of the selection of an ROI in each image avoiding drawing the outline of the bones that depends on the pressure of the wrist and generates errors. After obtaining the 3D models and the patterns to reproduce the models, the simulation was used to take the Norigami pattern to the 3D form but the effects of the paste in the simulation are still to be included.

次年度使用額が生じた理由

Independently from LEGO technology, we are trying to construct a machine instead of purchasing one. The fund will be used for the construction of a new Morigami Machine able to deal with A4 paper.

  • 研究成果

    (13件)

すべて 2017

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (11件) (うち国際学会 6件) 学会・シンポジウム開催 (1件)

  • [雑誌論文] Norigami Crease Pattern Model Design Based on Surfaces of Revolution.2017

    • 著者名/発表者名
      Romero JA, L. A. Diago, Hagiwara I.
    • 雑誌名

      INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES & COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE

      巻: 5B ページ: V05BT08A047

    • DOI

      10.1115/DETC2017-67821

    • 査読あり / 国際共著
  • [学会発表] Norigami Crease Pattern Model Design Based on Surfaces of Revolution.2017

    • 著者名/発表者名
      Romero JA, L. A. Diago, Hagiwara I.
    • 学会等名
      ASME
    • 国際学会
  • [学会発表] A Norigami Machine for Building 3D Origami based on Rotational Sweep2017

    • 著者名/発表者名
      Julian Romero, L. A. Diago, and Ichiro Hagiwara
    • 学会等名
      In Proc. JSST2017
    • 国際学会
  • [学会発表] Facial expression recognition for autonomous driving with deep convolutional neural network2017

    • 著者名/発表者名
      Yang Yang, L. A. Diago, Hiroe Abe and Ichiro Hagiwara
    • 学会等名
      In Proc. JSST2017
    • 国際学会
  • [学会発表] “Fuzzy Adherence Formula for the Evaluation of Just-In-Time Adaptive Interventions in the Health-e-living System”2017

    • 著者名/発表者名
      Remberto Martinez, Marcos Tong and L. A. Diago
    • 学会等名
      ISFUROS, Varadero, Cuba
    • 国際学会
  • [学会発表] 自動運転のための深層学習による負の顔表情分析2017

    • 著者名/発表者名
      安部 博枝,楊 陽,ルイスディアゴ、萩原 一郎
    • 学会等名
      日本機械学会 第 30 回計算力学講演会(CMD2017)
  • [学会発表] 自動運転のための深層学習による FAU 分析2017

    • 著者名/発表者名
      楊 陽,安部 博枝,ルイスディアゴ、萩原 一郎,廖 于靖
    • 学会等名
      日本機械学会 第 30 回計算力学講演会(CMD2017)
  • [学会発表] 自動運転のための深層学習による画像認識に関する一 考察2017

    • 著者名/発表者名
      ルイスディアゴ,楊 陽、萩原 一郎
    • 学会等名
      日本機械学会 第 30 回計算力学講演会(CMD2017),
  • [学会発表] New Paper-Folding Robot for Surface of Revolution-based 3D shapes with Gluing Areas2017

    • 著者名/発表者名
      Julian Romero, L. A. Diago, and Ichiro Hagiwara
    • 学会等名
      International Conference on Mathematical Modeling and Applications Based on Self-Organization (ICMMA 2017)
    • 国際学会
  • [学会発表] KANSEI evaluation by application of our own deep learning, International Conference on Mathematical Modeling and Applications Based on Self-Organization2017

    • 著者名/発表者名
      Hiroe Abe, L. A. Diago, and Ichiro Hagiwara
    • 学会等名
      ICMMA 2017
    • 国際学会
  • [学会発表] Scale House-Model Construction by GA-Based Polygon Matching and Origami Techniques2017

    • 著者名/発表者名
      Julian A. ROMERO, Luis A. DIAGO, Junichi SHINODA, and Ichiro HAGIWARA
    • 学会等名
      Dynamics and Design Conference 2017
  • [学会発表] Analysis of FE for autonomous cars by deep learning2017

    • 著者名/発表者名
      Yang Yang, Hiroe Abe, Luis Diago, Ichiro Hagiwara
    • 学会等名
      日本機械学会 第30回計算力学講演会
  • [学会・シンポジウム開催] ISFUROS, International Symposium on Fuzzy and Rough Sets, Varadero, Cuba2017

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi