• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実績報告書

Combinatorics around Painleve VI

研究課題

研究課題/領域番号 16K05057
研究機関京都大学

研究代表者

Kirillov Anatoli  京都大学, 数理解析研究所, 研究員 (20314057)

研究期間 (年度) 2016-04-01 – 2022-03-31
キーワードPainleve equations / Hessenberg varies / Fomin-Kirillov algebras
研究実績の概要

The main purpose of the Project " Combinatorics around ti VI" was to study combinatorial properties of algebraic solutions of the Painleve VI equation and associated polynomials which have been introduced and intensively studied by K. Okamoto and H. Umemura in the middle of 70's of the last century. Nowadays these polynomials are commonly known as the Umemura polynomials. It was observed by K. Okamoto and H.Umemura that these polynomials depend on two discrete parameters and satisfy very complicated recurrence relations, but nevertheless have only integer coefficients. In the case when one discrete parameter is equal to 0, explicit formula for Umemura polynomials has been conjectured by S.Okada and has been proved by K.Okamoto, H. Umemura, S.Okada and M.Noumi. Surprisingly, each coefficient has an interpretation as dimension of certain irreducible representation of the Lie group of type A.
The main results of this Project are:1) equivalence of Kirillov--Taneda and Noumi's conjectural formulas.2) Combinatorial interpretation of some coefficients of 2d-Umemura.We also study Lorentzian properties of 2d-Umemura polynomials For that goal we organize at RIMS and carry out the International Workshop "P-positivity in Matroid Theory and related topics", October 4-8,2021. During this Workshop several leading specialists in Combinatorics and Matroid Theory delivered lectures concerning Lorentzian polynomials.log-concavity,tropical geometry, which we expect cab be applied to the study of q-Painleve VI and related equation.

  • 研究成果

    (9件)

すべて 2021 その他

すべて 国際共同研究 (2件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (3件) (うち国際学会 3件) 図書 (1件) 備考 (1件) 学会・シンポジウム開催 (1件)

  • [国際共同研究] University of Oregon/UCB, Berkeley(米国)

    • 国名
      米国
    • 外国機関名
      University of Oregon/UCB, Berkeley
  • [国際共同研究] Warwick University(英国)

    • 国名
      英国
    • 外国機関名
      Warwick University
  • [雑誌論文] Rigged Configurations and Unimodality2021

    • 著者名/発表者名
      Anatol N. Kirillov
    • 雑誌名

      Progr. Math.,Representation Theory, Mathematical Physics, and Integrable Systems

      巻: 340 ページ: 453-496

    • DOI

      10.1007/978-3-030-78148-4_16

    • 査読あり / 国際共著
  • [学会発表] Rigged Confugurations, past and present,I2021

    • 著者名/発表者名
      A.N.Kirillov
    • 学会等名
      International Workshop P-positivity in Matroid Theory and Related Topics
    • 国際学会
  • [学会発表] Rigged Confugurations, past and present,II2021

    • 著者名/発表者名
      A.N.Kirillov
    • 学会等名
      International Workshop P-positivity in Matroid Theory and Related Topics
    • 国際学会
  • [学会発表] FK algebras and posutuvuty2021

    • 著者名/発表者名
      A.N.Kirillov
    • 学会等名
      International Workshop P-positivity in Matroid Theory and Related Topics
    • 国際学会
  • [図書] ベーテ仮設の数理2021

    • 著者名/発表者名
      坂本玲峰, アナトール N. キリロフ
    • 総ページ数
      320
    • 出版者
      森北出版
    • ISBN
      978-4-627-08241-0
  • [備考] P-positivity in Matroid Theory and Related Topics

    • URL

      https://www.kurims.kyoto-u.ac.jp/~kirillov/workshop2021.html

  • [学会・シンポジウム開催] International Workshop P-positivity in Matroid Theory and Related Topics2021

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi