• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

非線形微分方程式の定性解析の新機軸:非線形振動理論の新たな局面を迎えて

研究課題

研究課題/領域番号 16K05238
研究機関大阪公立大学

研究代表者

谷川 智幸  大阪公立大学, 大学院理学研究科, 教授 (10332008)

研究期間 (年度) 2016-04-01 – 2024-03-31
キーワード非線形微分方程式の振動理論 / 非線形振動理論 / 正則変動関数の理論 / 微分方程式の振動性と非振動性 / 微分方程式の解の漸近挙動
研究実績の概要

研究課題「非線形微分方程式の定性解析の新機軸:非線形振動理論の新たな局面を迎えて」を遂行するために, 本年度は, 非線形 Sturm-Liouville 微分作用素あるいは中立型の微分作用素を主要部としたもの, さらに主要部と摂動項に新たな冪乗関数を導入した全く新しいタイプとする常・偏・関数微分方程式やそれらの方程式系に対して, (a) 非線形微分方程式の振動性の特徴付け, (b) 振動解の定量的・定性的な性質(零点分布, 振幅など)の解明, (c) 様々な微分方程式の非振動解の無限遠点における漸近挙動の解析に J. Karamata が創始した正則変動関数の理論(複素解析, 解析的整数論, 確率論などにも応用されている)の活用, (d) 振動解及び非振動解の存在と無限遠点における漸近挙動に対して有益な情報を提供する(非)線形 Riccati 方程式の活用(解の全体構造の解明)という主に4つの課題に焦点を当てた研究を実施した.
[研究実施の具体的な内容]
[1] 情報収集: 本年度は, 線形版と非線形版の中間に位置する半分線形微分方程式及び冪乗関数を含む非線形微分方程式に対して,既に知られている先行研究の結果を体系的に纏め, 証明に利用されている数学的手法及び技術を分類し可能な限り情報を得る作業を行った. 情報の収集は, インターネットや他大学の図書館の利用及び関連の研究者からの助言を賜ったが, 本年度もインターネットの利用が主流となった. [2] 研究成果報告と論文策定: 研究経過を定期的にこの分野の世界的権威である草野尚教授(広島大学名誉教授, 福岡大学)とスロバキアの J. Jaros教授(コメニウス大学)に報告して批判と助言を求めた.

  • 研究成果

    (2件)

すべて 2023

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (1件) (うち国際学会 1件、 招待講演 1件)

  • [雑誌論文] Asymptotic analysis of solutions of second order quasilinear differential equations with variable exponents of nonlinearity.2023

    • 著者名/発表者名
      K. Fujimoto, M. Hamaoka and T. Tanigawa
    • 雑誌名

      Memoirs on Differential Equations and Mathematical Physics

      巻: 90 ページ: 1-13

    • 査読あり / オープンアクセス
  • [学会発表] Existence and Asymptotic Behavior of Nonoscillatory Solutions of Quasilinear Differential Equations with Variable Exponents2023

    • 著者名/発表者名
      Tomoyuki Tanigawa
    • 学会等名
      International Workshop on the Qualitative Theory of Differential Equations "QUALITDE 2023"
    • 国際学会 / 招待講演

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi