• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2016 年度 実施状況報告書

構造データに対する表現学習と特性の異なる2種類の実問題への応用

研究課題

研究課題/領域番号 16K12490
研究機関鹿児島大学

研究代表者

小野 智司  鹿児島大学, 理工学域工学系, 准教授 (90363605)

研究分担者 細田 滋毅  国立研究開発法人海洋研究開発機構, 地球環境観測研究開発センター, グループリーダー代理 (60399582)
川崎 洋  鹿児島大学, 理工学域工学系, 教授 (80361393)
福井 健一  大阪大学, 産業科学研究所, 准教授 (80418772)
研究期間 (年度) 2016-04-01 – 2019-03-31
キーワード表現学習 / 系列データ / 教師有り学習 / 訓練データ生成 / 海洋観測データ / 2次元コード
研究実績の概要

本研究では,構造化されたデータを含む問題における表現学習方式,すなわち,素性(特徴)の自動設計方式を開発する. 本研究では,素性の設計が困難な実問題として,海洋観測データにおける品質管理ラベルの割り当て問題,および,歪んだ2次元コードの復号問題に着目する. これらの問題は系列ラベリング問題として表現できるものの,特異なパターンの検出が困難であることが共通する.それぞれにおいて素性の自動構築方式を開発した後,構造データを対象とした表現学習方式として一般化を図る. なお,上記2問題における応用は,表現学習の有効性を検証するためだけでなく,それぞれ実用レベルの技術を確立する.
本年度は,1次元時系列データを対象としてStacked LSTMを用いた表現学習方式の検討を行った. 特に,微小な特徴量に着目する必要がある変化点検知を対象として教師有り学習を行う方式を開発した. 通常の変化点検知は教師無し学習を行うが,本研究では,変化点検知のための教師付訓練データを生成する方法を考案し,教師有り学習を可能にした.
また,歪んだ2次元コードの復号においては,補助線を含まないコードを対象とし,2次元コードが歪んでしまった場合の復号方式について検討を行った. 当初はマルコフ確率場としてのモデル化を検討していたが,補助線を含まないために十分な接続関係を持つグラフ構造を構築することが困難でることが判明した.このため,隣接するモジュールのエッジ領域の関係を制約条件として与え,組合わせ最適化によって全エッジの位置情報を推定し,復号を行う方式を新たに提案した.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

本研究は,海洋観測データの品質管理,および,歪んだ2次元コードの復号の2つの実問題における実用的な表現学習方式をそれぞれ実現した後に,より一般的な構造データに対する表現学習方式として一般化を試みる.
H28年度は,2つの実問題のうち,海洋観測データ等の1次元系列データにおける表現学習方式の着想を得ることができた. 歪んだ2次元コードの復号に関しては,特徴量を得た後に行われる処理のモデル自体の見直しを行ったため,これに利用可能な表現学習方式を次年度に検討する.
以上のような状況であるため,概ね順調に推移していると考える.

今後の研究の推進方策

当初の計画通り,2種類の実問題における実用的な表現学習方式をそれぞれ実現した後に,より一般的な構造データに対する表現学習方式として一般化を試みる.海洋観測データの品質管理においては,考案した表現学習方式を実際の観測データに適用し,有効性を検証する. また,歪んだ2次元コードの復号においては,今年度新たに考案した組合わせ最適化に基づく復号方式で有効可能な表現学習方式を検討する.

  • 研究成果

    (8件)

すべて 2017 2016

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (7件) (うち国際学会 2件)

  • [雑誌論文] Multi-agent-based Two-dimensional Barcode Decoding Robust against Non-uniform Geometric Distortion2016

    • 著者名/発表者名
      Kazuya Nakamura, Kohei Kamizuru, Hiroshi Kawasaki, and Satoshi Ono
    • 雑誌名

      International Journal of Computer Information Systems and Industrial Management Applications

      巻: 8 ページ: 423-433

    • 査読あり / オープンアクセス
  • [学会発表] マルチモーダル系列データを入力とする積層自己符号化器と議論における発話者認識への応用2017

    • 著者名/発表者名
      上園 翔平, 小野 智司
    • 学会等名
      情報処理学会火の国情報シンポジウム2016
    • 発表場所
      鹿児島大学(鹿児島県鹿児島市)
    • 年月日
      2017-03-01 – 2017-03-02
  • [学会発表] 気象時系列データにおける変化点検知の基礎検討2017

    • 著者名/発表者名
      前原宗太朗, 福井健一, 冨田智彦, 小野智司
    • 学会等名
      情報処理学会火の国情報シンポジウム2016
    • 発表場所
      鹿児島大学(鹿児島県鹿児島市)
    • 年月日
      2017-03-01 – 2017-03-02
  • [学会発表] Error Detection of Ocean Depth Series Data with Area Partitioning and Using Sliding Window2016

    • 著者名/発表者名
      Shogo Hayashi, Satoshi Ono, Shigeki Hosoda, Masayuki Numao, Ken-ichi Fukui
    • 学会等名
      IEEE 15th International Conference on Machine Learning and Applications (ICMLA 2016)
    • 発表場所
      Anaheim, USA
    • 年月日
      2016-12-17 – 2016-12-19
    • 国際学会
  • [学会発表] Decision Tree-based Feature Function Design in Conditional Random Field Applied to Error Detection of Ocean Observation Data2016

    • 著者名/発表者名
      Yosuke Kamikawaji, Haruki Matsuyama, Ken-ichi Fukui, Shigeki Hosoda, Satoshi Ono
    • 学会等名
      2016 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016)
    • 発表場所
      Athens, Greece
    • 年月日
      2016-12-06 – 2016-12-09
    • 国際学会
  • [学会発表] 近傍法による海洋深度系列データのエラー検知2016

    • 著者名/発表者名
      林勝悟, 小野智司, 細田滋毅, 沼尾正行, 福井健一
    • 学会等名
      第26回インテリジェント・システム・シンポジウム(FAN2016)
    • 発表場所
      大阪大学(大阪府吹田市)
    • 年月日
      2016-10-27 – 2016-10-28
  • [学会発表] 機械学習を用いた海洋観測データの良否識別の試み2016

    • 著者名/発表者名
      上川路洋介, 松山開, 福井健一, 細田滋毅, 小野智司
    • 学会等名
      日本海洋学会2016年度秋季大会
    • 発表場所
      鹿児島大学(鹿児島県鹿児島市)
    • 年月日
      2016-09-11 – 2016-09-15
  • [学会発表] 海洋観測データの良否識別を目的とした条件付確率場における素性関数の自動設計の試み2016

    • 著者名/発表者名
      上川路 洋介, 松山 開, 福井 健一, 細田 滋毅, 小野 智司
    • 学会等名
      人工知能学会全国大会(第30回)
    • 発表場所
      北九州国際会議場(福岡県北九州市)
    • 年月日
      2016-06-06 – 2016-06-09

URL: 

公開日: 2018-01-16  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi