研究実績の概要 |
(1)K3曲面の格子理論的データを作成するときに用いた計算機プログラムを高速化し,複数のCPUを使った分散計算を行うことで,階数64のextremal格子の新しい例を作ることに成功した. 位数35の巡回群をディスクリミナント群にもつ階数2の格子の32個のコピーの直交直和から出発して,この巡回群に値をもつ一般 quadratic residue 符号を用いて overlattice を列挙しこの例を構成した. (2)PSU(6,4)と Conwayの群 dot 222との同型は,標数2の4次元フェルマー3次超曲面に含まれる平面とリーチ格子内の正四面体の集合とのある組み合わせ論的構造をたもつ対応関係から得られるということが,Edgeにより1970年にsuggestされた.この対応関係を明示的に書き下し,dot 222とPSU(6,4)との同型を明示的に記述した.さらに階数22の圧着格子の自己同型群を計算した. (3)標数3のフェルマー4次曲面は超特異K3曲面である.この曲面上の112本の直線の中から6A_4型の特異ファイバーとzero sectionのなすコンフィギュレーションを全て列挙し,レベル4の楕円モジュラー曲面との関連を調べ,この楕円モジュラー曲面を標数3で還元した時に自己同型群がどのように変化するかを決定した. (4)p進整数環上の格子のdiscriminant形式の自己同型をもとの格子の自己同型に近似的に持ち上げることにより,spinor norm を計算し,与えられた格子のspinor genusの個数を求めるプログラムを書いた.ここでいう「近似的」とはp進位相での意味である.応用として,組み合わせ論的データを固定した楕円K3曲面のモジュライの連結成分を決定した.
|