• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実施状況報告書

ファノ多様体の有界性

研究課題

研究課題/領域番号 16K17558
研究機関東京大学

研究代表者

江 辰  東京大学, カブリ数物連携宇宙研究機構, 特任研究員 (90772773)

研究期間 (年度) 2016-04-01 – 2019-03-31
キーワードFano varieties / boundedness / K-stability / alpha-invariants / pluri-canonical system
研究実績の概要

In FY2017, I continued to study the boundedness of Fano varieties.As the Borisov-Alexeev-Borisov Conjecture was solved by Birkar last year, I participated a workshop at NCTS, Taiwan on April to explain his work, and we are planning to write a book to explain the ideas of his work on BAB Conjecture.Then I turned to study boundedness of K-semistable Fano varieties. Both K-stability and boundedness are central topics of the study of Fano varieties. K-stability is expected to be the right condition in order to construct a good moduli space for Fano varieties and boundedness is the first step towards the construction of a moduli. So this study combines these two central topics. On May, I proved that K-semistable Fano varieties with volumes bounded from below form a bounded family.Later, I continued my joint work with Meng Chen at Fudan University on the study of the explicit geometry of terminal (weak) Fano 3-folds. We studied the behavior of pluri-canonical system of terminal weak Fano 3-folds, and showed that any terminal weak Fano 3-fold is birational to another terminal weak Fano 3-fold with the 52nd-canonical system giving a birational map. This result generalized our first joint work which is published on JDG in 2016.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

This year I proved the boundedness of K-semistable Fano varieties with bounded volumes. This progress is somehow unexpected. The result related two central area of the study of Fano varieties and might be important for constructing moduli.

今後の研究の推進方策

In the future, I am going to continue the study of boundedness of Fano varieties and related topics. Note that I was planning to study the BAB Conjecture when I start this research project, but now it has been solved by Birkar. However, boundedness of Fano varieties is a very deep and interesting area and still has many open problems. I will mainly concentrate on the following topics:
1.Constructing good moduli for certain Fano varieties. As I showed the boundedness of K-semistable Fano varieties with anti-canonical degrees bounded from below, it is natural to consider the construction of moduli.
2.Boundedness in positive characteristics. As minimal model program was developed in dimension 3 in characteristic p>5, it is interesting to ask what we can say about boundedness of singular Fano 3-folds in characteristic p>5.
3.Boundedness of rationally connected Calabi-Yau varieties. Boundedness of Calabi-Yau varieties is a more challenging problem. As rationally connected Calabi-Yau varieties behave very like Fano varieties, we may expect to show the boundedness of rationally connected Calabi-Yau varieties by method in the study of Fano varieties.

  • 研究成果

    (7件)

すべて 2018 2017 その他

すべて 雑誌論文 (3件) (うち国際共著 3件、 査読あり 2件、 オープンアクセス 1件) 学会発表 (3件) (うち国際学会 3件、 招待講演 3件) 備考 (1件)

  • [雑誌論文] Torsion exceptional sheaves on weak del Pezzo surfaces of Type A2018

    • 著者名/発表者名
      Cao Pu、Jiang Chen
    • 雑誌名

      Journal of Algebra

      巻: 499 ページ: 583~609

    • DOI

      10.1016/j.jalgebra.2017.12.008

    • 査読あり / 国際共著
  • [雑誌論文] On Fujita invariants of subvarieties of a uniruled variety2017

    • 著者名/発表者名
      Hacon Christopher、Jiang Chen
    • 雑誌名

      Algebraic Geometry

      巻: 4 (3) ページ: 304~310

    • DOI

      10.14231/AG-2017-017

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] K-semistable Fano manifolds with the smallest alpha invariant2017

    • 著者名/発表者名
      Jiang Chen
    • 雑誌名

      International Journal of Mathematics

      巻: 28(6) ページ: 1750044,9pp

    • DOI

      10.1142/S0129167X17500446

    • 国際共著
  • [学会発表] Effective birationality2017

    • 著者名/発表者名
      Chen Jiang
    • 学会等名
      NCTS Workshop on Singularities, Linear Systems, and Fano Varieties
    • 国際学会 / 招待講演
  • [学会発表] On alpha-invariants of Fano varieties2017

    • 著者名/発表者名
      Chen Jiang
    • 学会等名
      BICMR-Tokyo Algebraic Geometry Workshop
    • 国際学会 / 招待講演
  • [学会発表] Boundedness of K-semistable Q-Fano varieties with degrees bounded from below2017

    • 著者名/発表者名
      Chen Jiang
    • 学会等名
      Stability, Boundedness and Fano Varieties
    • 国際学会 / 招待講演
  • [備考] Homepage of Chen Jiang

    • URL

      https://sites.google.com/site/chenjiangmath/

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi