• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 実施状況報告書

An adjoint functors approach to models of cognition

研究課題

研究課題/領域番号 16KT0025
研究機関国立研究開発法人産業技術総合研究所

研究代表者

Phillips Steven  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 上級主任研究員 (90344209)

研究分担者 武田 裕司  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 研究チーム長 (10357410)
研究期間 (年度) 2016-07-19 – 2020-03-31
キーワードdual-process / category / functor / adjunction / sheaf / sheafification / cognition
研究実績の概要

This project proposes a category theory approach to the development of theory and experiments for dual-process cognition, i.e. where multiple cognitive processing paths a deployed for a common cognitive task, which has been characterized as fast versus slow thinking (Kahneman, 2011). The working hypothesis is that adjoint functors underlie dual- process cognition. Experiments based on this formal category theory construction were conducted (Phillips, et al. 2016, 2017). For the purpose of pursuing the theoretically side of this project, the main result for this financial year was the development of a category (sheaf) theory model (Phillips, 2018) that accounts for certain generalization effects observed for a dual-process experiment (Phillips, et al. 2016), where participants where required to learn cue-target mappings that could be realized by associative processes; no generalization case, or relational process: as the product of two cue-target maps; generalization case.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

These results were modeled as data attached to an underlying topological space (presheaf/sheaf): first and second letter/feature dimensions constitute the space, and the data are the cues/targets. Sheaving models the generalization observed in the experiment. The data labelled “old” are attached as a result of learning the mappings given by the training set. In the case that the underlying space is the discrete topology, then sheaving results in the data labelled “new”, which correspond to the mappings given by the testing set. This situation corresponds to the relational process path. In the case that the space is the indiscrete topology sheaving is trivial: the presheaf is also a sheaf, so no new data are attached, hence no generalization. This situation corresponds to the associative process.

今後の研究の推進方策

The plan for future work is to continue developing the sheaf theoretic account. In particular the current model only models two aspects of generalization, but not the transition from no generalization to generalization. Since generalization depends on the underlying topology, we need to consider how that topology is obtained from the data. Further use of sheaf theory and related constructions should be applicable here.
The budget for the new financial year is intended to cover the cost of:
- employing a technical assistant to manage administrative aspects of the project, and
- expenses associated with presenting results for conferences and journal publications.

次年度使用額が生じた理由

The budget for the new financial year is intended to cover the cost of:
- employing a technical assistant to manage administrative aspects of the project, and
- expenses associated with presenting results for conferences and journal publications.

  • 研究成果

    (3件)

すべて 2018

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (1件) (うち招待講演 1件) 図書 (1件)

  • [雑誌論文] Going beyond the data as the patching (sheaving) of local knowledge.2018

    • 著者名/発表者名
      Phillips, S.
    • 雑誌名

      Frontiers in Psychology

      巻: 9 ページ: 1926

    • DOI

      10.3389/fpsyg.2018.01926

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Category theory for cognition.2018

    • 著者名/発表者名
      Phillips, S.
    • 学会等名
      9th Annual Symposium of Indian Scientists Association in Japan.
    • 招待講演
  • [図書] Proceedings of the 40th Annual Conference of the Cognitive Science Society2018

    • 著者名/発表者名
      Phillips, S.
    • 総ページ数
      6
    • 出版者
      Cognitive Science Society

URL: 

公開日: 2019-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi