研究課題/領域番号 |
17540174
|
研究種目 |
基盤研究(C)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
基礎解析学
|
研究機関 | 早稲田大学 |
研究代表者 |
山崎 昌男 早稲田大学, 理工学術院, 教授 (20174659)
|
連携研究者 |
柴田 良弘 早稲田大学, 理工学術院, 教授 (50114088)
田中 和永 早稲田大学, 理工学術院, 教授 (20188288)
榎本 裕子 早稲田大学, 総合研究機構, 講師 (60367042)
|
研究期間 (年度) |
2005 – 2008
|
キーワード | 偏微分方程式 / Navier-Stokes方程式 / 実解析学 / 関数空間 |
研究概要 |
研究成果の概要:平行平板間領域における外力付きのStokes方程式について、阿部孝之氏と共同でBesov空間において考察し、特にPoiseuille流がこの立場で捉えられることを示した。次いで外部領域における外力付きの定常Navier-Stokes方程式について、無限遠方での流速が0である場合と0と異なる場合について統一的に考察し、応用として無限遠方での流速が0に近づく場合の解の挙動を精密に調べた。最後に、負階の関数空間におけるNavier-Stokes方程式の考察の基礎となるHelmholtz分解をこれらの空間で構成した。またが威力に関する強い対称性を仮定して、全平面上での定常Navier-Stokes方程式の解の一意存在を示した。
|