• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2005 年度 実績報告書

カペリ型恒等式とリー環の普遍包絡環、重複度自由表現の研究

研究課題

研究課題/領域番号 17740080
研究機関鹿児島大学

研究代表者

伊藤 稔  鹿児島大学, 理学部, 助教授 (60381141)

キーワードカペリ恒等式 / 二項型多項式列 / シューア多項式 / リー環の普遍包絡環 / 非可換行列式
研究概要

古典リー環の普遍包絡環のカペリ型中心元の固有値に関する研究を進めた。
主な成果は、二項型多項式列に付随するシューア型函数を定義し、これに関する性質を明らかにしたことである。このシューア型函数は本質的にShifted Schur functionの一般化であるが、いろいろな興味深い性質を持つことがわかった(展開公式、単純な母函数表示、奇妙な双対性など)。
さらにこのシューア型函数を利用して、古典リー環の普遍包絡環のカペリ型中心元の固有値を表示することに成功した。すなわち中心差分に対応する二項型多項式列に付随する場合を考えることによって、このシューア型函数を用いてカペリ型中心元(直交リー環の普遍包絡環の行列式型中心元、およびシンプレクティックリー環の普遍包絡環のパーマネント型中心元)の既約表現における固有値をうまく表すことができた。また直交リー環の普遍包絡環のパーマネント型中心元、シンプレクティック リー環の普遍包絡環の行列式型中心元についても一部についてはその固有値がうまく表示で,きる。これらの結果は「一般線型リー環の普遍包絡環の有名な中心元であるカペリ元の固有値がShifted Schur functionsで表わされる」という結果の類似と見なせる。
また一般線型リー環の普遍包絡環のWronski型の関係式についても二項型多項式列に付随するシューア型函数一般に成り立つ展開式を用いて新しい証明を与えることができることもわかった。

  • 研究成果

    (1件)

すべて 2005

すべて 雑誌論文 (1件)

  • [雑誌論文] Capelli identities for reductive dual pairs2005

    • 著者名/発表者名
      Minoru ITOH
    • 雑誌名

      Advances in Mathematics 194・2

      ページ: 345-397

URL: 

公開日: 2007-04-02   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi