研究課題/領域番号 |
17H06128
|
研究種目 |
基盤研究(S)
|
配分区分 | 補助金 |
研究分野 |
幾何学
|
研究機関 | 九州大学 |
研究代表者 |
佐伯 修 九州大学, マス・フォア・インダストリ研究所, 教授 (30201510)
|
研究分担者 |
大本 亨 北海道大学, 理学研究院, 教授 (20264400)
鎌田 聖一 大阪大学, 大学院理学研究科, 教授 (60254380)
石川 昌治 慶應義塾大学, 経済学部(日吉), 教授 (10361784)
遠藤 久顕 東京工業大学, 理学院, 教授 (20323777)
岩瀬 則夫 九州大学, 数理学研究院, 教授 (60213287)
小林 真人 秋田大学, 理工学研究科, 准教授 (10261645)
|
研究期間 (年度) |
2017-05-31 – 2022-03-31
|
キーワード | 特異点 / 多様体 / 幾何的トポロジー / 特異ファイバー / Vassiliev型不変量 / Lefschetz束 / 次世代カタストロフィー理論 / データ可視化 |
研究成果の概要 |
可微分写像の大域的で具体的な簡略化手法を、幾何的トポロジーを用いて確立し、4次元多様体が常に良い構造を持つことを発見した。また、境界付き多様体上の写像の同境を初めて定式化するなど、新研究領域を創出した意義は大きい。さらに、非特異ファイバーと特異点集合が絡まないことがあることを突き止め、それを沈めこみ理論に応用した結果は、特異点論の汎用性を顕著に表している。また情報幾何学で重要な双対平坦構造について、特異モデルにも適用可能となるように理論を刷新するなど、諸科学分野への応用を目的とする次世代カタストロフィー理論の構築を進めた。
|
自由記述の分野 |
トポロジー
|
研究成果の学術的意義や社会的意義 |
具体的で構成的な幾何的トポロジーの考え方を特異点論の研究に持ち込み、これまでできていなかった特異写像の具体的な構成を可能とし、多様体の構造を明らかにするための新しい手法を開発するなど、微分トポロジーに大きく貢献した。さらに諸科学分野や産業界への応用を推進するため、現代的な特異点論を駆使した次世代カタストロフィー理論の構築を推し進め、統計学やデータ可視化に斬新な手法を提供するための理論的基礎付けを行うなどして、幾何学を超える新研究領域創出に貢献した。
|