• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実績報告書

格子の理論を用いた可積分な微差分方程式の解の性質とその応用に関する研究

研究課題

研究課題/領域番号 17J00092
研究機関青山学院大学

研究代表者

中園 信孝  青山学院大学, 理工学部, 特別研究員(PD)

研究期間 (年度) 2017-04-26 – 2020-03-31
キーワードパンルヴェ方程式 / 離散冪関数 / ABS方程式 / ラックス形式 / アフィン・ワイル群 / 周期簡約 / 離散KdV方程式 / 多胞体
研究実績の概要

本年度は,可積分な非線型常微分・差分方程式の族と多胞体上に定義される偏差分方程式の関係について,以下の課題を中心に研究を行った.
(1) 立方体上に定義される2次元偏差分方程式系(ABS方程式)と可積分な2階の非線型常微分方程式の族(パンルヴェ方程式)の関係について,格子の理論を用いた研究を行った.その結果,第4および第5パンルヴェ方程式がABS方程式からの簡約から得られること,その可積分性を保証する線型方程式が立方体上のコンシステンシーから得られること,また,立方体の超立方体への拡張がパンルヴェ方程式の高階化を引き起こすことを明らかにした.本結果は「Reduction of lattice equations to the Painleve equations: PIV and PV」の題目でJournal of Mathematical Physicsから出版された.
(2) Schramm型のCircle Patternsを持つ離散冪函数が第6パンルヴェ方程式(P6)の理論から導出できることが知られている.この関係を用いて離散冪函数とABS方程式の関係についての研究を行った.その結果,離散冪函数はABS方程式とその背後にある立方体の対称性を用いて構成できること,その対称性がP6の理論から導出できること,立方体を4次元超立方体に拡張することでHexagonal Circle Patternsを持つ離散正則関数が導出できることなどが分かった.本結果の一部を「Geometric description of discrete power function associated with the sixth Painleve equation」の題目でProceedings of The Royal Society of London Series A.に投稿し受理された.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

今年度は,「立方体上に定義される2次元偏差分方程式系とパンルヴェ方程式の関係」および「パンルヴェ方程式に付随する離散正則関数と立方体上に定義される2次元偏差分方程式系との対応」について研究に取り組み,これらの結果をまとめて2本の論文を出版することが出来た.また,これらの内容について国外の研究集会で3回の講演を行なった.

今後の研究の推進方策

離散パンルヴェ方程式は初期値空間と呼ばれる有理曲面により分類されることが知られている.今年度の研究ではその分類の中で上位の曲面であるA2型の加法型離散パンルヴェ方程式(以下,δ-P(A2)とよぶ)と多胞体上に定義される偏差分方程式の関係についても考察した.その結果,δ-P(A2)は立方体ではなく立方八面体上に定義される偏差分方程式の簡約から導出できることが明らかになった.立方八面体上の偏差分方程式の理論はまだ整備されていないため,来年度は引き続き立方八面体上の偏差分方程式の分類,可積分性などについての研究を行っていく予定である.

  • 研究成果

    (6件)

すべて 2018 2017

すべて 雑誌論文 (3件) 学会発表 (3件) (うち国際学会 2件)

  • [雑誌論文] Reduction of lattice equations to the Painleve equations: PIV and PV2018

    • 著者名/発表者名
      Nakazono Nobutaka
    • 雑誌名

      Journal of Mathematical Physics

      巻: 59 ページ: 022702~022702

    • DOI

      https://doi.org/10.1063/1.5023252

  • [雑誌論文] Continuous, Discrete and Ultradiscrete Painlev? Equations2017

    • 著者名/発表者名
      Nakazono Nobutaka、Shi Yang、Kanki Masataka
    • 雑誌名

      Symmetries and Integrability of Difference Equations

      巻: ? ページ: 1~41

    • DOI

      https://doi.org/10.1007/978-3-319-56666-5_1

  • [雑誌論文] Geometric description of a discrete power function associated with the sixth Painleve equation2017

    • 著者名/発表者名
      Joshi Nalini、Kajiwara Kenji、Masuda Tetsu、Nakazono Nobutaka、Shi Yang
    • 雑誌名

      Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science

      巻: 473 ページ: 20170312~0312

    • DOI

      10.1098/rspa.2017.0312

  • [学会発表] Reduction from ABS equations to the Painleve equations2018

    • 著者名/発表者名
      Nobutaka Nakazono
    • 学会等名
      Joint Mathematics Meetings AMS Special Session on Algebraic, Analytic, and Geometric Aspects of Integrable Systems, Painleve Equations, and Random Matrices
  • [学会発表] Geometric description of discrete power function associated with the sixth Painleve equation2017

    • 著者名/発表者名
      Nalini Joshi, Kenji Kajiwara, Tetsu Masuda, Nobutaka Nakazono, Yang Shi
    • 学会等名
      Painleve Equations and Applications: A Workshop in Memory of A. A. Kapaev
    • 国際学会
  • [学会発表] Difference-differential Lax representations of the fourth and fifth Painleve equations2017

    • 著者名/発表者名
      Nobutaka Nakazono
    • 学会等名
      The XXVth International Conference on Integrable Systems and Quantum symmetries
    • 国際学会

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi