• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実績報告書

多対多対応を持つデータの分析手法に関する理論研究

研究課題

研究課題/領域番号 17J03623
研究機関京都大学

研究代表者

奥野 彰文  京都大学, 情報学研究科, 特別研究員(DC2)

研究期間 (年度) 2017-04-26 – 2019-03-31
キーワードグラフ埋め込み / ニューラルネットワーク / 異種データ / 表現定理
研究実績の概要

画像やテキストといった,種類の異なるデータをまとめて異種データと呼ぶ.既存研究では(1)異種データ間に1対1の対応を仮定した生成モデルが正準相関分析(Canonical Correlation Analysis, CCA)の理論研究で利用されており,また,(2)一種類のデータ間に多対多対応を仮定した生成モデルがグラフ解析の分野で発展してきた.一方で,異種データに多対多対応を仮定した生成モデルは提案されていなかった.
そこで初年度は既存のモデルを拡張し,異種データに多対多対応を仮定した生成モデルを新たに提案した.提案した生成モデルに基づき,最尤法により異種データの特徴量ベクトルの低次元変換を推定する手法Probabilistic Multi-view Graph Embedding (PMvGE)を提案した.PMvGEは様々な多変量解析手法を特殊例として含むCross-Domain Matching Correlation Analysis (CDMCA)を近似的に一般化した非線形な確率的枠組みになっていることも示した.
提案法の統計的性質を調べるために,線形モデルとニューラルネットワーク (Neural Network, NN)を用いたPMvGEで推定量の一致性を示した.さらに,NNを利用したとき,特徴量の次元が十分に高ければ内積だけで非常に広いクラスの類似度を表現できることを証明した.NN自体の表現定理はよく知られているが,NNにより特徴量ベクトルを変換し,その内積が高い表現力を持つことはこれまで理論的に示されておらず,この結果は,近年急速に発展している,NNを基にしたグラフ埋め込み一般の研究にも応用できる.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

初年度はモデルの提案とその数理的側面に加え,実データ解析でその有用性を実証することが出来,おおむね当初計画どおり成果がでている.

今後の研究の推進方策

今後は理論研究を進め,その結果を実際の応用研究につなげる.まず現在の確率モデルで表現できるクラスがどの程度広く,その限界がどこにあるのかを明らかにし,さらに拡張したモデルを提案する.新しいモデルを画像データなどに適用し,実データ解析での有用性を調べる.

  • 研究成果

    (3件)

すべて 2017

すべて 学会発表 (3件)

  • [学会発表] Cross-view link prediction with attribute vectors and its information criterion2017

    • 著者名/発表者名
      奥野彰文, 下平英寿
    • 学会等名
      統計関連学会連合大会
  • [学会発表] 属性ベクトルとニューラルネットワークを用いた異種データ間のリンク構造の最尤推定2017

    • 著者名/発表者名
      奥野彰文, 羽田哲也, 下平英寿
    • 学会等名
      情報論的学習理論と機会学習ワークショップ
  • [学会発表] Statistical consistency of multi-view correlation analysis with many-to-many associations2017

    • 著者名/発表者名
      Akifumi Okuno, Hidetoshi Shimodaira
    • 学会等名
      Joint Statistical Meeting

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi