• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実績報告書

組み込みインテリジェントビジョンとビデオシステムのための組み込みの圧縮

研究課題

研究課題/領域番号 17J10477
研究機関早稲田大学

研究代表者

郭 栗  早稲田大学, 理工学術院(情報生産システム研究科), 特別研究員(DC2)

研究期間 (年度) 2017-04-26 – 2019-03-31
キーワードvideo coding / computer vision / embedded compression / power consumption
研究実績の概要

My research topic is "embedded compression for embedded intelligent vision & video system". Nowadays, video coding and computer vision algorithms are widely applied in mobile devices, such as smartphones and wireless sensor networks. While many of these devices are battery powered or even battery-less, a low energy consumption is crucial. In this research, I focus on reducing the dominant energy consumption of DRAM access by embedded compression.
DRAM access power is proportional to its volume, so it can be reduced by compressing data before storing them to DRAM and decompressing data after fetched back. Hence, I researched on the embedded compression for embedded video and vision systems. I published two journal and three international conference papers in this year.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

DRAM access power is proportional to its volume, so it can be reduced by compressing data before storing them to DRAM and decompressing data after fetched back. The main DRAM access for computer vision algorithms includes the input images, the intermediate results of feature maps and the weight models. The compression of input images has been done before. Hence, for the latter two DRAM access, the two-year project is divided into four parts (P), including the compression of feature maps (P1), the compression of pre-trained weight models (P2), training based on the compressed weight models (P3), and hardware implementation of the above compression algorithms (P4). As scheduled for the first year, P1 and P2 have been finished, and some preparations for P3 have been done.

今後の研究の推進方策

In the second year, the main works include:
<Part 3- training based on the compressed weights> to design the EC for weight in the training process. According to the study of 32-bit float training process, I will try to design a weight compression algorithm with a dynamic quantization. Moreover, for the training stage, some issues may be caused by applying lossy EC, more time will be spent on testing this work.
<Part 4- hardware implementation and efficient memory organization> to finish hardware implementations of EC, respectively for feature maps and weights. It contains the architecture design, RTL code writing, simulation, synthesis, the analysis of power dissipation and memory organization.
<Summary of this EC framework: finally, I will write a summary of this research.

  • 研究成果

    (5件)

すべて 2018 2017

すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (3件) (うち国際学会 3件)

  • [雑誌論文] Distortion Control and Optimization for Lossy Embedded Compression in Video Coded System2017

    • 著者名/発表者名
      Li Guo, Dajiang Zhou, Shinji Kimura, and Satoshi Goto
    • 雑誌名

      IEICE Trans. On Fundamentals of Electronics, Communications and Computer Sciences

      巻: E100-A ページ: 2416-2424

    • DOI

      https://doi.org/10.1587/transfun.E100.A.2416

    • 査読あり
  • [雑誌論文] Framework and VLSI Architecture of Measurement-Domain Intra Prediction for Compressively Sensed Visual Contents2017

    • 著者名/発表者名
      Jianbin Zhou, Dajiang Zhou, Li Guo, Takeshi Yoshimura, and Satoshi Goto
    • 雑誌名

      IEICE Trans. On Fundamentals of Electronics, Communications and Computer Sciences

      巻: E100-A ページ: 2869-2877

    • DOI

      https://doi.org/10.1587/transfun.E100.A.2869

    • 査読あり
  • [学会発表] Sparseness Ratio Allocation and Neuron Re-pruning for Neural Networks Compression2018

    • 著者名/発表者名
      Li Guo, Dajiang Zhou, Jinjia Zhou, and Shinji Kimura
    • 学会等名
      IEEE Int. Symposium on Circuits and Systems (ISCAS)
    • 国際学会
  • [学会発表] Embedded Frame Compression for Energy-Efficient Computer Vision Systems2018

    • 著者名/発表者名
      Li Guo, Dajiang Zhou, Jinjia Zhou, and Shinji Kimura
    • 学会等名
      IEEE Int. Symposium on Circuits and Systems (ISCAS)
    • 国際学会
  • [学会発表] Measurement-Domain Intra Prediction Framework for Compressively Sensed Images2017

    • 著者名/発表者名
      Jianbin Zhou, Dajiang Zhou, Li Guo, Takeshi Yoshimura, and Satoshi Goto
    • 学会等名
      IEEE Int. Symposium on Circuits and Systems (ISCAS)
    • 国際学会

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi