研究実績の概要 |
Olivine (MgO, SiO2 and Fe2O3 oxide mixture) with 5 wt% Pt powder used as oxygen sensor was synthesized using gas mixture furnace at iron-wustite (IW) buffer and Ni-NiO (NNO) buffered condition at 1300 oC. Diffusion couple method is adopted to investigate the redox kinetics of olivine. Diffusion experiments were conducted for different durations at 1 GPa, 1100-1300 oC using piston cylinder apparatus. After recovery, oxygen fugacity profiles were calculated following the method described by Faul et al. (2019). Diffusion coefficients were obtained using Boltzmann-Matano method. Water content after diffusion was measured using FTIR. Except one couple, the water content of all the other couples shows < 10 wt. ppm. Redox process in olivine could be viewed as a diffusion-controlled process. Diffusion coefficient in oxidized olivine shows obvious oxygen fugacity dependence, while that in reduced one shows small dependence. The activation enthalpy is calculated to be 235 kJ/mol, which is comparable with that for Fe-Mg diffusion in olivine. However, the magnitude is 2-4 orders higher. Since the activation enthalpy and magnitude are comparable with that of diffusion of hydrous defects related to Mg-vacancies, it is possible that even extremely small amount of water could dominate redox kinetics in olivine. The diffusion length calculated indicate that the influence exerted by slab on the reduced mantle is very limited. Therefore, it is possible that once subducted more, the oxidized slab can bring redox budget to deep mantle as it keeps dry condition.
|