• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実施状況報告書

High-Order Deep Learning Models: Theoretical Study and Applications

研究課題

研究課題/領域番号 17K00326
研究機関国立研究開発法人理化学研究所

研究代表者

ZHAO QIBIN  国立研究開発法人理化学研究所, 革新知能統合研究センター, ユニットリーダー (30599618)

研究分担者 曹 建庭  埼玉工業大学, 工学部, 教授 (20306989)
研究期間 (年度) 2017-04-01 – 2020-03-31
キーワードTensor decomposition / Deep neural network / PU learning / GAN
研究実績の概要

We study tensor based deep learning model and algorithms. In the traditional deep learning methods, each layer is considered as a vector and the connection between layers is considered as a matrix. However, the real-world data is usually represented as a high order tensor. To this end, we formulate the deep learning framework by considering each layer as a tensor and the connection between the layers as multilinear operations based on multiple matrices.
We developed a new tensor based generative adverbial network, which use tensors as input and output, the fully connected layer can be modeled by multilinear product on each tensor mode. The experimental results show that our method can alleviate the mode collapse problem of GAN.
We studied the combination of multiple GANs to perform the important positive unlabeled learning problem. The objective is to learn two generators simutaneously by three discriminator. Each generator can capture one class distribution.
We introduced a new type of tensor decomposition model, which is called tensor ring decomposition. We studied the theoretical ground and the mathematical properties of our proposed model. Then, we developed several algorithms to solve this model. Finally, we applied it to represent the fully connected weight parameters, yielding a significant compression for model complexity.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The project is performing smoothly.

今後の研究の推進方策

In the next step, we will investigate how the newly proposed tensor ring decomposition can be applied to deep learning models.

1. We will investigate the low rank representation ability of tensor ring decomposition by applying it to CNN, LSTM, and RNN. The goal is to reduce the model complexity while keeping the same generalization ability.

2. We will study more efficient tensor networks and the corresponding algorithms to model the unknown variables in the general machine learning method. This will allow us to develop new machine learning method with high computational efficiency and compact model complexity.

次年度使用額が生じた理由

Some conference will be hold in the next fiscal year. We plan to use it for business trip.

  • 研究成果

    (8件)

すべて 2018 2017

すべて 雑誌論文 (3件) (うち国際共著 3件、 査読あり 3件) 学会発表 (5件) (うち国際学会 5件)

  • [雑誌論文] Correlated Component Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface2018

    • 著者名/発表者名
      Zhang Yangsong、Guo Daqing、Li Fali、Yin Erwei、Zhang Yu、Li Peiyang、Zhao Qibin、Tanaka Toshihisa、Yao Dezhong、Xu Peng
    • 雑誌名

      IEEE Transactions on Neural Systems and Rehabilitation Engineering

      巻: 26 ページ: 948~956

    • DOI

      10.1109/TNSRE.2018.2826541

    • 査読あり / 国際共著
  • [雑誌論文] Completion of High Order Tensor Data with Missing Entries via Tensor-Train Decomposition2017

    • 著者名/発表者名
      Yuan Longhao、Zhao Qibin、Cao Jianting
    • 雑誌名

      Lecture Notes in Computer Science

      巻: 10634 ページ: 222~229

    • DOI

      https://doi.org/10.1007/978-3-319-70087-8_24

    • 査読あり / 国際共著
  • [雑誌論文] Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition2017

    • 著者名/発表者名
      Shi Qiquan、Cheung Yiu-ming、Zhao Qibin
    • 雑誌名

      Lecture Notes in Computer Science

      巻: 10534 ページ: 564~581

    • DOI

      https://doi.org/10.1007/978-3-319-71249-9_34

    • 査読あり / 国際共著
  • [学会発表] HIGH-ORDER TENSOR COMPLETION FOR DATA RECOVERY VIA SPARSE TENSOR-TRAIN OPTIMIZATION2018

    • 著者名/発表者名
      Longhao Yuan, Qibin Zhao, Jianting Cao
    • 学会等名
      2018 IEEE International Conference on Acoustics, Speech and Signal Processing
    • 国際学会
  • [学会発表] Generative Adversarial Positive-Unlabelled Learning2018

    • 著者名/発表者名
      Ming Hou, Brahim Chaib-draa, Qibin Zhao
    • 学会等名
      27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence
    • 国際学会
  • [学会発表] TGAN: TENSORIZING GENERATIVE ADVERSARIAL NETS2018

    • 著者名/発表者名
      Xingwei Cao, Xuyang Zhao, Qibin Zhao
    • 学会等名
      The Third International Conference On Consumer Electronics (ICCE) Asia
    • 国際学会
  • [学会発表] A Hybrid Brain Computer Interface Based on Audiovisual Stimuli P3002018

    • 著者名/発表者名
      Xuyang Zhao, Gaochao Cui, Longhao Yuan, Toshihisa, Tanaka, Qibin Zhao, Jianting Cao
    • 学会等名
      The Third International Conference On Consumer Electronics (ICCE) Asia
    • 国際学会
  • [学会発表] Brain Image Completion by Bayesian Tensor Decomposition2017

    • 著者名/発表者名
      Lihua Gui, Qibin Zhao, Jianting Cao
    • 学会等名
      2017 22nd International Conference on Digital Signal Processing (DSP)
    • 国際学会

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi