• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実施状況報告書

ベルグマン空間に対するGleason問題の可解性と積分作用素解析への応用

研究課題

研究課題/領域番号 17K05282
研究機関東海大学

研究代表者

植木 誠一郎  東海大学, 理学部, 准教授 (70512408)

研究期間 (年度) 2017-04-01 – 2021-03-31
キーワードベルグマン空間 / ジグムント空間 / Gleason問題 / チェザロ型積分作用素 / 荷重合成作用素 / 等距離作用素
研究実績の概要

この研究課題は、ある種の一般化された重み関数であるBekollet weightを持つベルグマン空間に対するGleason問題の可解性を微分作用素の立場から考察し、その解をベルグマン空間の特徴付けおよびチェザロ型積分作用素の解析に応用したいという動機に基づいている。解析の足掛かりとして、今年度はN次元複素ユークリッド空間内の単位球上で定義される正則関数からなるジグムント空間に対する特徴付けとGleason問題の可解性について研究を遂行した。特徴付けに関しては、Radial derivativeの高階微分を導入することで、ジグムント空間に属するための必要十分条件の一つとして高階Radial derivativeの局所的な可積分性であることが明らかになった。Gleason問題の可解性については、ベルグマン型射影のジグムント空間への作用の仕方を詳細に解析することで具体的な解の構成が可能となり、ジグムント空間に対するGleason問題は可解であることがわかった。Gleason問題の解の具体的な構成方法が本研究課題のベルグマン空間への応用でき、解の具体的な表現がベルグマン空間の特徴付けに活かされることが期待される。なお、今年度得られたジグムント空間についての研究結果は、雑誌:Indagationes Mathematicae New Seriesに掲載されている。
また、重み付きベルグマン空間の特徴付けについては、Invariant gradientやRadial derivativeを用いた特徴付けを考察した。1変数に対するRiesz Decomposition定理とSlice functionに対する積分公式を応用することで、いくつかの結果が得られた。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

ベルグマン空間に対するGleason問題の可解性と特徴付けについての研究を行った。Gleason問題の可解性については、ベルグマン空間と親和性のあるジグムント空間で考察することで、ベルグマン型射影の解析が重要であることが判明し、このことはベルグマン空間での考察にも役立つことが期待されるので、今後の研究の方法が確立されつつあると考える。また、特徴付けについても、ポテンシャル論の立場からであるが、Invariant gradientとRadial derivativeを用いてベルグマン空間を特徴付け、さらに標準的なノルムと同値なノルム不等式の確立までできた。

今後の研究の推進方策

ベルグマン空間に対するGleason問題の可解性を研究するために、まずはBekollet条件下でのベルグマン型射影の有界性について考える。これにはベルグマン空間へのある種の埋め込みが有効であろうと現段階では推察されている。この研究の着想を実行し、Gleason問題の可解性を研究するきっかけとしたい。また、ポテンシャル論的なアプローチで得られたベルグマン空間の特徴付けをHyperbolic型クラスに適用することで、荷重合成作用素などを含めた種々の作用素を共通に扱える理論の構築を目指したい。

次年度使用額が生じた理由

購入予定であった解析関数空間論に関する洋書の出版が遅れているため、次年度使用額が発生した。この額の使用計画は、次年度の物品費と合わせて、研究遂行に必要な図書の購入に充てる。

  • 研究成果

    (3件)

すべて 2018 2017

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (2件) (うち招待講演 1件)

  • [雑誌論文] Characterizations and Gleason's problem for the Zygmund space on the unit ball2017

    • 著者名/発表者名
      Sei-Ichiro Ueki
    • 雑誌名

      Indagationes Mathematicae

      巻: 28 ページ: 962-975

    • DOI

      doi.org/10.1016/j.indag.2017.06.014

    • 査読あり
  • [学会発表] Isometries of the Zygmund F-algebra2018

    • 著者名/発表者名
      植木誠一郎
    • 学会等名
      等距離写像理論と保存問題の多様な視点からの研究
  • [学会発表] Fock型空間に対するequivalent normと積分作用素解析への応用2017

    • 著者名/発表者名
      植木誠一郎
    • 学会等名
      作用素環・作用素環論研究集会
    • 招待講演

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi