• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

バナハ空間の幾何学的定数とその応用

研究課題

研究課題/領域番号 17K05287
研究機関北海道教育大学

研究代表者

小室 直人  北海道教育大学, 教育学部, 教授 (30195862)

研究分担者 三谷 健一  岡山県立大学, 情報工学部, 准教授 (00468969)
斎藤 吉助  新潟大学, 自然科学系, フェロー (30018949) [辞退]
研究期間 (年度) 2017-04-01 – 2022-03-31
キーワードJames定数 / von Neumann Jordan 定数 / Radon空間
研究実績の概要

1.James定数が√2 となる2次元ノルムに対する von Neumann Jordan 定数(NJ 定数)の上限値を決定する問題に取り組み、計算の基礎データを集めた。単位球が正8角形となるノルムでのNJ定数 4-2√2 が上限値と予想されるが、最終的な証明には至っていない。
2.2次元absolute norm 全体 AN_2 を二つの凸部分集合に分け、NJ定数をその上に制限した時の凸性が知られている。その観点から、これらの凸部分集合の端点をなすノルムのNJ定数の計算データを集めた。

現在までの達成度 (区分)
現在までの達成度 (区分)

4: 遅れている

理由

各種ノルムに対する定数の計算データを収集しているが、いずれも顕著な結果が得られる段階には至っていない。
新型コロナの影響により、研究時間の確保が難しく、各種研究会への参加や研究打ち合わせ出張なども実施できなかった。

今後の研究の推進方策

1.James定数が√2であるノルムのNJ定数の上限値を決定する問題は、最終段階にあると考えており、最優先課題と考えている。このために、対称となるノルム全体の集合を、より詳細に決定することが必要となる。
2.2次元Radon空間の特徴づけが得られたことから、その上での幾何学的定数の最大値等の応用を試みる。

次年度使用額が生じた理由

新型コロナの影響により、研究会参加、研究打ち合わせ出張が実施できなかったため。

  • 研究成果

    (1件)

すべて 2021

すべて 学会発表 (1件) (うち招待講演 1件)

  • [学会発表] バナッハ空間の幾何学的定数2021

    • 著者名/発表者名
      三谷健一
    • 学会等名
      日本数学会
    • 招待講演

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi