• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

外力を持つ外部領域上の Navier-Stokes 方程式の実解析的研究

研究課題

研究課題/領域番号 17K05339
研究機関早稲田大学

研究代表者

山崎 昌男  早稲田大学, 理工学術院, 教授 (20174659)

研究期間 (年度) 2017-04-01 – 2023-03-31
キーワードNavier-Stokes / 非有界領域 / ancient solution / 周期解 / 概周期解 / Ap-weight
研究実績の概要

2次元全空間上のNavier-Stokes方程式について、時間に依存する小さい外力がある場合について、小さいancient solutionの存在、一意性を示し。さらに解の初期摂動についての安定性についての安定性を示した。
ancient solutionは定常解はもとより、時間周期解、時間概周期解答を統一的に取り扱う概念である。有界領域では絵画指数的に減衰するので容易であるが、非有界領域では減衰が遅いところのに困難がある。この問題は3次元以上の全空間および外部領域では申請者によって既に解かれていたが、本年には2次元での考察を始めた。当面全空間の場合について考察を行って成果を得た。成果は査読付き専門誌に掲載された。
2次元では拡散効果が不十分であるから、この研究ではデータにある種の対称性を仮定し、さらに取り扱う関数空間も3次元以上で有効であったものが2次元の場合には使えないためAp-weightと呼ばれるクラスに属する重みのついた関数空間上で方程式を扱った。またGauss核をFourier multiplierとみなせ、これがAp-weightに属する重みのついて空間上で有界作用素となることを用いて結果を得た。
全空間での結果は外部領域を取り扱う際の基礎となるものである. 実際内部領域では重みがある場合と重みがない場合が本質的に差がないことを用いれば、既存の内部領域での結果を重みのある場合に書き換え、これと今回得られた全空間の結果を張り合わせることによりこの結果を外部領域に拡張できることが期待される。これは次年度以降に研究を行う。

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

コロナ禍のため、研究遂行の上で重要になる、対面による研究連絡が十分に行えなかったため。

今後の研究の推進方策

コロナ禍が今後も続くようならば、今後は電子メール以外の(Zoom等による)研究連絡を導入する必要があると思う。

次年度使用額が生じた理由

研究遂行に必要な研究連絡が行えなかったため、次年度に研究連絡を行う予定である。

  • 研究成果

    (1件)

すべて 2021

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件)

  • [雑誌論文] The Navier-Stokes equations on the jplane with time-dependent external forces2021

    • 著者名/発表者名
      Masao Yamazaki
    • 雑誌名

      Partial Differential Equations and Applications

      巻: 2 ページ: 論文番号4

    • DOI

      10.1007/s42985-021-00107-6

    • 査読あり / オープンアクセス

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi