• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2017 年度 実施状況報告書

有限次元多元環のホッホシルトコホモロジーのBV-構造についての研究

研究課題

研究課題/領域番号 17K14175
研究機関東京理科大学

研究代表者

板垣 智洋  東京理科大学, 理学部第一部数学科, 助教 (80756487)

研究期間 (年度) 2017-04-01 – 2020-03-31
キーワードホッホシルトコホモロジー / BV-構造 / フロベニウス多元環
研究実績の概要

今年度における計画は、ホッホシルトコホモロジー環のBatalin-Vilkovisky構造(BV-構造)の具体計算例を増やすことを目的とし、中山自己同型が半単純であるフロベニウス多元環の具体的なクラスに対するホッホシルトコホモロジー環のBV構造の具体計算を行うことであった。特に、自己入射中山多元環に対して、そのホッホシルトコホモロジー環のBV-構造を具体的に決定することであった。今年度は、代数的閉体上の中山自己同型が半単純である自己入射中山多元環を対象に、そのホッホシルトコホモロジーのBV-構造を決定することができた。特に、自己入射中山多元環のホッホシルトコホモロジー環の構造は[Bardzell-Locateli-Marcos, 2000]において、生成元とその間の積と関係を定めることによって得られている。Bardzell(1997)による射影分解とbar resolutionの間の複体の準同型を用いることによって、コホモロジー群の各次数における基底に対してBV-differentialによる像をそれぞれ決定し、BV-構造の精密な表示を得ることができた。また、BV-構造からGerstenhaber algebraの構造も決定した。具体的には、Gerstenhaber bracketが零写像になることが分かった。また、中山自己同型が半単純でない自己入射多元環に対しては、Volkov(2016)によって導入されたコホモロジー環を計算し、そのBV-構造の具体的な表示を得ることができた。このコホモロジーに関してもGerstenhaber bracketが零写像になることが分かった。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

当該年度の研究計画に沿って、中山自己同型が半単純である自己入射中山多元環のホッホシルトコホモロジーのBatalin-Vilkovisky構造(BV-構造)を具体的に決定することができたため、おおむね順調に進展していると考えている。また、中山自己同型が半単純でない場合についても中山自己同型から得られるコホモロジーのBV-構造を具体的に決定することができたことは、中山自己同型が半単純でない場合のフロベニウス多元環に対して、そのホッホシルトコホモロジー上でBV-構造の存在を考える上でも重要な手掛かりになると考えている。

今後の研究の推進方策

フロベニウス多元環のホッホシルトコホモロジーのBatalin-Vilkovisky構造の具体計算例はまだまだ少ない。今後は他のフロベニウス多元環のクラスに対して、そのホッホシルトコホモロジー環のBV-構造の具体計算を行い、ホッホシルトコホモロジーを得るために構成した射影分解との関係を考察する。

次年度使用額が生じた理由

当初の計画であったドイツのシュトゥットガルト大学への在外研究において、大学内の研究費を使用したため、次年度使用額が生じた。次年度では、シュトゥットガルト大学へ研究滞在費に使用する予定である。

  • 研究成果

    (9件)

すべて 2018 2017

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (8件) (うち国際学会 3件、 招待講演 1件)

  • [雑誌論文] On presentations of Hochschild extension algebras for a class of self-injective Nakayama algebras2018

    • 著者名/発表者名
      Koie Hideyuki、Itagaki Tomohiro、Sanada Katsunori
    • 雑誌名

      SUT Journal of Mathematics

      巻: 53 ページ: 135~148

    • 査読あり
  • [学会発表] Batalin-Vilkovisky algebra structures on the Hochschild cohomology of self-injective Nakayama algebras2018

    • 著者名/発表者名
      板垣智洋
    • 学会等名
      日本数学会2018年度年会
  • [学会発表] On presentations of Hochschild extension algebras for a class of self-injective Nakayama algebras2018

    • 著者名/発表者名
      鯉江秀行(登壇者)、板垣智洋、眞田克典
    • 学会等名
      日本数学会2018年度年会
  • [学会発表] A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of self-injective Nakayama algebras2017

    • 著者名/発表者名
      Tomohiro Itagaki
    • 学会等名
      シュトゥットガルト大学表現論セミナー
    • 国際学会
  • [学会発表] Batalin-Vilkovisky algebra structures on the Hochschild cohomology of self-injective Nakayama algebras2017

    • 著者名/発表者名
      Tomohiro Itagaki
    • 学会等名
      華東師範大学数学科セミナー
    • 国際学会 / 招待講演
  • [学会発表] Symmetric Hochschild extension algebras and the normalization of 2-cocycles.2017

    • 著者名/発表者名
      Tomohiro Itagaki
    • 学会等名
      シュトゥットガルト大学表現論セミナー
    • 国際学会
  • [学会発表] Symmetric Hochschild extension algebras and normalized 2-cocycles2017

    • 著者名/発表者名
      板垣智洋
    • 学会等名
      日本数学会秋季総合分科会
  • [学会発表] Symmetric Hochschild extension algebras and normalized 2-cocycles2017

    • 著者名/発表者名
      板垣智洋
    • 学会等名
      環論及び表現論シンポジウム
  • [学会発表] The ordinary quivers of Hochschild extension algebras for self-injective Nakayama algebras2017

    • 著者名/発表者名
      鯉江秀行(登壇者)、板垣智洋、眞田克典
    • 学会等名
      環論及び表現論シンポジウム

URL: 

公開日: 2018-12-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi