• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 実施状況報告書

Thermodynamic formalism for non-compact spaces with applications in conformal dynamics

研究課題

研究課題/領域番号 17K14203
研究機関島根大学

研究代表者

イェーリッシュ ヨハネス  島根大学, 学術研究院理工学系, 講師 (90741869)

研究期間 (年度) 2017-04-01 – 2020-03-31
キーワードSpectral gap property / Multifractal analysis / Transience
研究実績の概要

We established the spectral gap property for random iteration of certain diffeomorphisms on the real line which do not have a common fixed point. Using this, generalized Takagi functions have been introduced and analyzed using thermodynamic formalism (Preprint on Arxiv, Joint with H. Sumi).

The results motivated a refinement of a well-known result on local dimension spectra of measures invariant under a hyperbolic dynamical system. (Preprint on Arxiv, Joint with H. Sumi).

We also found that the thermodynamic formalism for Z-Extensions, which was developed in the first year of the funding period, gives new insights to a well-studied interval map with transient behavior introduced by van Strien, and studied recently by Bruin/Todd in J. London Math 2012 from viewpoint of thermodynamics.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We had good progress on the spectral gap property for transfer operators associated with the random iteration of hyperbolic maps of the interval. This has naturally motivated another general result in multifractal Analysis, which provides a positive answer to a question by Pieter Allaart (Adv. Math. Differentiability and Hoelder spectra of a class of self-affine functions, 2018).
Regarding our formalism for Z extensions, it seems possible to extend our formalism so that it covers in particular an example studied recently by Bruin/Todd in J. London Math 2012.

今後の研究の推進方策

We further develop the thermodynamic formalism for dynamical systems with transience. The goal is to cover the example studied recently by Bruin/Todd in J. London Math 2012.
We aim to complete a project on amenability of graph extensions. The goal is to characterize amenability in terms of the pressure function in thermodynamic formalism.
We also consider the spectral gap property for nicely expanding rational semigroups.This can be used to derive analyticity of the pressure function and stochastic laws such as the central limit theorem.
Further, we work on multifractal analysis of birkhoff spectra in the non-uniformly hyperbolic setting.

次年度使用額が生じた理由

The purchase of computer was delayed because the desired new model was not available.

備考

Information on my Research and Preprints.

  • 研究成果

    (8件)

すべて 2019 2018 その他

すべて 学会発表 (7件) (うち国際学会 5件、 招待講演 3件) 備考 (1件)

  • [学会発表] Weighted cogrowth formula for free groups2019

    • 著者名/発表者名
      J. Jaerisch
    • 学会等名
      日本数学会2019年度年会, 東京工業大学 Geometry session
  • [学会発表] Dimension gaps in transient dynamics on the real line2019

    • 著者名/発表者名
      J. Jaerisch
    • 学会等名
      日本数学会2019年度年会, 東京工業大学 Statistics and probability session
  • [学会発表] Thermodynamic formalism for transient dynamics on the real line2018

    • 著者名/発表者名
      J. Jaerisch
    • 学会等名
      力学系 -理論と応用の融合、京都大学
    • 国際学会
  • [学会発表] Spectral gap property for random dynamics on the real line and multifractal analysis of gener-alised Takagi functions2018

    • 著者名/発表者名
      J. Jaerisch
    • 学会等名
      AIMS Conference on Dynamical Systems, Differential Equations and Applications, National Taiwan University
    • 国際学会 / 招待講演
  • [学会発表] Weighted cogrowth formula for free groups2018

    • 著者名/発表者名
      J. Jaerisch
    • 学会等名
      Conference on Ergodic theory, Osaka University
    • 国際学会
  • [学会発表] Thermodynamic formalism for transient dynamics on the real line2018

    • 著者名/発表者名
      J. Jaerisch
    • 学会等名
      Complex Dynamics conference, Kyoto University
    • 国際学会 / 招待講演
  • [学会発表] Thermodynamic formalism for transient dynamics on the real line2018

    • 著者名/発表者名
      J. Jaerisch
    • 学会等名
      Colloquium at University North Texas, TX, US
    • 国際学会 / 招待講演
  • [備考] Webpage of J. Jaerisch

    • URL

      http://www.math.shimane-u.ac.jp/~jaerisch/index.htm

URL: 

公開日: 2019-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi