研究課題/領域番号 |
17K14352
|
研究機関 | 東京大学 |
研究代表者 |
赤城 裕 東京大学, 大学院理学系研究科(理学部), 助教 (20739437)
|
研究期間 (年度) |
2017-04-01 – 2021-03-31
|
キーワード | トポロジカル励起 / ソリトン / ホモトピー論 / 磁性体 / ダイナミクス / 物性理論 / 計算物理 / トポロジカル不変量 |
研究実績の概要 |
ハイゼンベルグ項と双二次相互作用項から成るスピン1のbilinear-biquadratic模型は、量子スピン液晶相が安定化する最も基本的な模型である。この模型における量子スピン液晶相の第1ホモトピー群はZ2であることから、有限温度でZ2ボルテックスとそれに由来した物性が現れることが期待される。実際に、モンテカルロ法を用いることでBerezinskii-Kosterlitz-Thouless(BKT)転移を示唆する結果が得られた。また、低温展開による解析計算と上記の数値計算によって得られた四重極秩序パラメタが一致することを確かめ、Mermin-Wagnerの定理に反しない結果も得られた。更に、4次のRunge-Kutta法を用いて、BKT転移点近傍の動的構造因子を調べたところ、低エネルギー領域において、南部-Goldstoneモード以外に、対称点及びその近傍に非自明な構造が現れることが明らかとなった。これは、場の理論のみからは導けず、我々の開発した手法によって初めて捉えた構造であり、上記のZ2ボルテックスに由来するものだと考えられる。 本年度はさらに、通常のフェルミオン系では見られないような特有の数学的性質(非エルミート性)を内包するマグノン(ボゾン)系に着目し、3次元マグノンZ2トポロジカル相を実現する具体的模型とそれらを特徴付けるZ2トポロジカル不変量を提案した。また、非可換幾何の手法を用いて、乱れのあるマグノン系トポロジカル相の不変量も定義した。ここでは、ボゾン系における“フェルミ”射影演算子を導入することで上記の手法を拡張した。定義の妥当性を確かめるため、乱れのあるマグノンホール系を記述する人工的スピンアイス模型に適用したところ、clean limitでのChern数と整合的な結果が得られた。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
「研究実績の概要」に記載したように、我々の開発した手法によって初めて捉えることができた、トポロジカル励起に由来した特有の物性が明らかとなったため。また、磁性体におけるトポロジーに関連したトピックである、マグノン系トポロジカル相についても重要な研究成果が得られているため。
|
今後の研究の推進方策 |
研究計画通り、高速計算が可能な、トポロジカル励起のためのアニーリング法の開発に成功した。さらに、研究計画には含まれていなかったが、動的性質を調べるための新手法の開発にも成功した。これら2つの手法を組み合わせることにより、磁性体におけるトポロジカル励起に関する研究を飛躍的に発展させることが可能となる。とりわけ、トポロジカル励起の静的・動的性質を詳細に調べることで、トポロジカル励起に誘起される磁気双極子に由来した特異的振る舞いを明らかにする。
|
次年度使用額が生じた理由 |
コロナ禍の影響により、宿泊・交通費の出費が当初の予定より大幅に少なくなったため。 使用計画としては、主に研究遂行・発表に必要なノートPCの購入と国内・国際研究会の出張旅費にあてる。
|
備考 |
https://sites.google.com/site/yutakaakagiacademian/
|