• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 研究成果報告書

仮想現実環境を活用したロボットの文脈概念獲得およびその応用

研究課題

  • PDF
研究課題/領域番号 17K18331
研究種目

若手研究(B)

配分区分基金
研究分野 知能ロボティクス
知能情報学
研究機関国立情報学研究所

研究代表者

坂戸 達陽  国立情報学研究所, 情報学プリンシプル研究系, 特任研究員 (10780679)

研究期間 (年度) 2017-04-01 – 2019-03-31
キーワード能動学習
研究成果の概要

本研究では、動作パターンに対する文脈に応じたラベリングという問題を対象として、ロボットが能動学習の枠組みを用いて効率的な学習を行うための学習手法を明らかにした。本研究では、動作が行われる場所、動作に用いられる道具を文脈、文脈と動作パターンの組を場面とし、システムに能動学習の枠組みを用いて場面に対するラベリングを行わせた。従来のuncertainty samplingに加え、学習の進捗に応じてclosed questionを用いることで、システムはより少ない質問回数で目標とする正答率を達成した。

自由記述の分野

知能ロボティクス

研究成果の学術的意義や社会的意義

ロボットが我々の社会の中での人‐ロボットインタラクションに必要な文脈概念を獲得するには、大量の行動の観測データが必要となる。仮想現実環境におけるロボットの能動的な環境、文脈提示による知識獲得手法を確立することができれば、実世界の環境では集めることの難しい大量の観測データを効率的に収集でき、その学習結果は、実世界ロボットの有効な振る舞いのために活用することができると考えられる。本研究では仮想現実環境と能動学習を組み合わせることで、ロボットの効率的な学習のための文脈提示手法を明らかにした。

URL: 

公開日: 2020-03-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi