研究課題/領域番号 |
17K18561
|
研究機関 | 京都大学 |
研究代表者 |
原 千秋 京都大学, 経済研究所, 教授 (90314468)
|
研究期間 (年度) |
2017-06-30 – 2021-03-31
|
キーワード | 不確実性 / 動学 / 協力ゲーム / 効率的配分 / 動学的一貫性 / 資産価格 / ポートフォリオ |
研究実績の概要 |
本研究の目的は,不確実性を含んだ動学モデルで,集団的意思決定に基づいた最適資源配分を分析することである.具体的には,逐次的な資産(証券)の取引や資産価格変動を含むモデルを考察し,効率的な利得やリターンの配分が達成されるかを検討する.効率的リスク配分と均衡資産価格は表裏一体の関係にあるが,最適化に基づいた資産の通時的取引(ポートフォリオ・リバンランシング)を協力ゲームの枠組で集団的指揮決定の観点から明らかにするという切り口は,不確実性を排除した静学的モデルで構築された従来の協力ゲームの理論には見られない.そこで,本研究では,協力ゲームの理論の既存の結果を動学的かつ確率的な枠組に拡張することを試みる.特に,意思決定を行う組織が将来選択する行動にコミットできない場合や,不確実性に関する認識に曖昧さ(ambiguity)が含まれる場合といった,動学的一貫性を欠く場合に生ずる諸問題の処方箋を提示する
平成31年度には,国内外から多くの研究者を,研究者が主催する研究会に招き,自身の研究を報告してもらった.特に,いわゆる想定外の状況が生じうる状況で主体がどのように新たな情報を学ぶか,異質な確率的評価を持つ主体よりなる経済での証券の取引高はどの水準に決まるか,最適な資源配分を分権化することは可能か,期待効用仮説の経済実験によって検証されるか,などが本研究に最も関連するテーマであった.また,欧州の研究者との共同研究を通じて,曖昧さ回避的な消費者より成る経済の最適リスク配分の特徴を解明した.他方,新型肺炎の流行により,2020年3月に開催を予定していた数理ファイナンスと意思決定論に関する国際的研究集会(2件)を中止した.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
本研究課題の特徴は,協力ゲーム,制度設計の理論,動学的確率的一般均衡理論,契約理論,意思決定論,数理ファイナンスといった多くの分野で培われた手法を駆使して,最適な集団的意思決定のあり方を明らかにする点にある.したがって,平成31年度には多くの研究者を招くことで関連領域について新たな知見を得られたが,他方,新型肺炎の流行により,予定していたふたつの国際的研究集会を中止した.これらの研究会においては,数理ファイナンスと意思決定論の主要なトピックに関する報告の他,近年発展の著しい曖昧さ(ambiguity)回避的な選好を持つ意思決定主体の最適停止時刻問題の解法に関する報告など,本研究に特に関連する報告がプログラムに組み込まれていたが,それら最新の研究の動向を知る機会が得られなかった.また,連続時間モデルにおける集団的意思決定の問題については,解析的困難さゆえ,いまだ満足のいく結果が導出されていない.しかしながら,曖昧さ回避度が異なる消費者よりなる経済における最適なリスク配分の特徴は,集団的意思決定での最適資源配分を分析する上で有益であるので,その研究を欧州の研究者と始めたことは,本課題を十分に前進させることとなった.
|
今後の研究の推進方策 |
本研究課題の終了に向けて,理論モデルの一層発展させるとともに,その現実への応用にも注力する予定である.的確な予測や処方箋を導き出すためには,理論モデルのパラメターを正しい値に設定することが不可欠だが,そのようなパラメター値の推定には誤差がつきもなので、まずは,その統計的性質を加味した計量分析を進展させる必要がある.その後,実社会での非効率な集団的意思決定問題が引き起こす社会的損失を推定したい.具体的には,年金制度や保険制度の保険料額の設定や,信託された遺産の流動化のタイミングの決定などの問題を取り扱う予定である.また,集団的意思決定問題が興味深いのは,そこに参加する主体の利害が一致しないからであるが,これはしばしばリスクや曖昧さからの回避度や主観的時間割引率の異質性に起因する.これらの異質性を持つ主体よりなる経済の最適リスク配分の分析を通じて,最適な集団的意思決定が,通時的な保有資産(ポートフォリオ)や資産価格の変化にいかなる含意を与えるかも明らかにしたい.
|
次年度使用額が生じた理由 |
次年度使用額が生じた第一の理由は,研究代表者が所属する京都大学経済研究所から,研究計画を立案した際には予想できなかった研究助成金が複数支給されたからである.そのひとつは,研究補助者への謝金援助である.また,所外の研究者と遂行するプロジェクト研究についても,本課題の研究代表者が所内研究者として参加する課題が2件採択された.これらはいずれも不確実性の経済分析に関するもので,本研究課題と研究テーマが重複し,なおかつ支給期間が1年間に限られていたので,本研究課題より優先して予算を支出した.さらに,動学的モデルにおけるナイト的不確実性に関する日欧共同研究(Open Research Area)プロジェクトも採択されたのだが,それは単年度予算方式を採ったので,これについても予算を優先して支出した.次年度使用額が生じた第二の理由は,当初予定していた国際的研究集会(2件)が新型肺炎の流行により中止されたので,支出額が少額となったことである.
|