研究概要 |
真核生物型の概日振動遺伝子ネットワークの再構成に関しては、昨年に引き続き、再構成された短周期振動に影響を与えるパラメータセットの同定を目指した。さらに、新たな周期解析方法を導入して統計的な解析も行った。培地を高栄養なものに変え、フィードバックループを始動する際にpositive因子の発現誘導を短時間にすると、12時間を越えるような長周期振動が観察された。また、positive因子とnegative因子の挙動を波長の異なるルシフェラーゼを用いて同時モニターできる系を開発し、両者の振動がほぼ同位相であることを見出した。これは理論的な予想とは反する結果であった。この他、ハイスループットな実験系の確立を目指し、96ウェルマイクロプレートリーダーの導入を行い、観察系の細胞密度が低い場合に明瞭な振動が出やすいことを見出した。細胞毎に振動の周期・位相・振幅が異なるため集団レベルで同調した観察結果が得られにくかったのだと推測している。 原核生物型の概日振動分子ネットワークの再構成に関しては、昨年度に引き続き、大腸菌へのkai遺伝子群(シアノバクテリアの時計遺伝子群)の移植実験を行った。今回はkaiAとkaiBCを独立に制御することで、さまざまな発現比での動態を追った。その結果、培養条件(細胞増殖速度)依存的にリン酸化上昇・脱リン酸化促進ダイナミクスが得られており、条件検討によってはリン酸化振動の再構成は可能であると思われるが、実現には至らなかった。一方、時刻情報を遺伝子発現に変換するSasA-RpaA系の大腸菌に移植してもKaiCによるリン酸化ジレーの変化は観察できなかった。リン酸化の一過的な変化などについては興味深い観察結果も得られたので論文にまとめた(Int.J.Bioinf.Res. Appl., 印刷中)。
|