• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2006 年度 実績報告書

微分方程式、幾何構造、そしてツイスター理論の相互関係

研究課題

研究課題/領域番号 18540105
研究種目

基盤研究(C)

研究機関沼津工業高等専門学校

研究代表者

待田 芳徳  沼津工業高等専門学校, 教養科, 助教授 (90141895)

研究分担者 佐藤 肇  名古屋大学, 多元数理科学研究科, 教授 (30011612)
石川 剛郎  北海道大学, 理学研究科, 教授 (50176161)
森本 徹  奈良女子大学, 理学部, 教授 (80025460)
藤井 一幸  横浜市立大学, 総合科学部, 教授 (00128084)
キーワードツイスター理論 / モンジュ・アンペール方程式 / グルサー方程式 / コーン場 / ラグランジュ・グラスマン双対 / エンゲル・ルジャンドル双対 / ルジャンドル特異点論 / クレロー方程式
研究概要

微分方程式の方程式自身および解のそれぞれの幾何構造や構成を,ダブル・ファイバリングを通してみるツイスター理論から調べてみた.
1.Monge-Ampere方程式を一般化したMonge-Ampere系のうち,概積構造に関係したLagrange対のクラスの研究から,概複素構造に関係したCR型のクラスの研究を主にやり,幾何的解のジェネリックな特異点の様相として孤立特異点が現われることがわかった.
2.放物型でMonge系が可積分であるGoursat方程式の本質が,2n+1次元接触多様体上のLegendreコーン場に付随した微分方程式であることがわかった.構成にはLagrange-Grassmann双対性を使い,解の構成にはGoursat構造をもつ3n-1次元多様体の分布からの部分多様体を使った.さらに,n+1次元多様体上のコーン場に付随した1階偏微分方程式も同様に考えられることがわかった.
3.3次元接触構造と3次元コーン構造の関係を,Engel-Legendre双対性を通してみて,射影構造と(2,1)型共形構造の対応,接曲面の特異点の型の対応,閉Legendreとヌル曲線の指数の対応などを調べた.
4.Legendre多様体による1-ジェット空間から0-ジェット空間への射影によるLegendre特異点論はよく知られているところであるが,2-ジェット空間からの射影による第2次Legendre特異点論を,Clairaut方程式とツイスター理論の関係から,まだ不十分ではあるが展開した.

  • 研究成果

    (4件)

すべて 2007 2006

すべて 雑誌論文 (4件)

  • [雑誌論文] Integral representations of solutions to the sub-Laplace equations By twistor theory2007

    • 著者名/発表者名
      待田芳徳
    • 雑誌名

      JP Journal of Geometry and Topology 7・1

      ページ: 1-22

  • [雑誌論文] SU(3)型U(1)インスタントンについて2006

    • 著者名/発表者名
      待田芳徳
    • 雑誌名

      数理解析研究所講究録 1500

      ページ: 46-56

  • [雑誌論文] Extra singularities of geometric solutions to Monge-Ampere equations of three variables2006

    • 著者名/発表者名
      石川剛郎
    • 雑誌名

      数理解析研究所講究録 1502

      ページ: 41-53

  • [雑誌論文] Goursat equations and twistor theory - two dualities -2006

    • 著者名/発表者名
      待田芳徳
    • 雑誌名

      数理解析研究所講究録 1502

      ページ: 125-139

URL: 

公開日: 2008-05-08   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi