研究課題/領域番号 |
18540164
|
研究種目 |
基盤研究(C)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
基礎解析学
|
研究機関 | 新潟大学 |
研究代表者 |
斎藤 吉助 新潟大学, 自然科学系, 教授 (30018949)
|
研究分担者 |
加藤 幹雄 九州工業大学, 大学院・工学研究院, 教授 (50090551)
高橋 泰嗣 岡山県立大学, 情報工学部, 教授 (30001853)
羽鳥 理 新潟大学, 自然科学系, 教授 (70156363)
渡邉 恵一 新潟大学, 自然科学系, 准教授 (50210894)
|
研究期間 (年度) |
2006 – 2007
|
キーワード | バナッハ空間 / 一様凸性 / James定数 / von Neumann-Jordan定数 / 三角不等式 / ローレンツ空間 |
研究概要 |
バナッハ空間における単位球の形状は、バナッハ空間の構造理論と深く関係しており、その研究は、ClarksonやHannerなどによるノルム不等式や、von Neumann-Jordan定数やJames定数などの種々の定数の研究と関係して、今までに多くの研究がなされ、関数解析学ばかりでなく、それに関係する多くの分野に応用されている。 まず、この研究では三角不等式のsharpな不等式とその逆不等式を示すことに成功し、応用として、uniform non-squareというバナッハ空間の理論において重要な概念の特徴付けに成功した。更に、三角不等式の結果を更に精密化に成功し、J. Math. Anal. Appl.に発表した。その不等式から、また関連する幾何学的な定数の導入が見込まれ、今後の発展が注目されている。 一方、absolute norm空間の研究も進展しており、加藤や斎藤によって、新しい直和の構造から、バナッハ空間の幾何学的構造の特徴付けに成功している。例えば、三谷-斎藤により、A-直和の概念を用いて、B-convexやJ-convexの概念の特徴付けに成功し、Banach J. Math. Anal.の創刊号に発表された。この方面の研究は今後も多くの結果が見込まれ、国内ばかりでなく、海外でも研究が進んでいる。その中で、Banach空間の定数の具体的な計算として、2次元ローレンツ空間のJames定数の計算を行った。この空間については、未だ完全にJames定数が計算されていなかったが、この計算に成功し、J. Math. Anal. Appl.に発表された。
|