研究概要 |
本年度は,主に,高次元ブラックホールについて研究し,次の成果を得た. 1.高次元回転ブラックホールの安定性:これまでに漸近的に平坦な非回転球対称ブラックホールについては高次元でも安定であることが示されていたが,回転ブラックホールについては5次元以上での不安定性が示唆されていた.そこで,漸近的に平坦な高次元回転ブラックホールのうちホライズンが球の位相をもちかつ回転角速度が1成分のみとなるもの(単純回転MPブラックホール)について,テンソル型摂動と呼ばれるタイプの摂動に対する安定性を数値計算により調べた.その結果,漸近的に反de Sitter的なブラックホールと異なり,漸近的に平坦な回転ブラックホールは,(7次元以上で)テンソル型摂働に対して安定であることを数値的に調べた角運動量とモード量子数の範囲で確認した.後ほど他の研究者により,これらのブラックホールはスカラ型と呼ばれるタイプの摂動に対しては不安定であることが示されたので,我々の結果は不安定性のタイプを特定する役割を果たす.この成果は,Phys.Rev.D誌に発表された. 2.高次元回転ブラックホールの蒸発における灰色因子の数値計算:ある種の高次元統一理論では,LHC実験でミニブラックホールが生成され蒸発することが予言される.この可能性を検証する上で,蒸発スペクトルの詳細が重要となる.この詳細を決定するために,単純回転MPブラックホールのテンソル型モードに対して灰色因子(純粋の黒体放射からのずれ)を数値的に決定し,蒸発で放出される重力子のエネルギーおよび角運動量スペクトルの形から余剰次元の情報を得ることができることを示した.この成果は,Phys.Rev.D誌に発表された.
|