平成19年度は主に次の2項目の研究に取り組んだ。 1)粒子(分子)群から分子速度分布関数を形成する方法 分子レベルの流動現象を取り扱う分子動力学解法と、分子の平均自由行程レベルから連続体レベルまでの流動現象が取り扱い可能なボルツマン/ナビエ・ストークス統合解法とを結合するためには、分子動力学解法より求まる有限個の粒子(分子)群から分子速度分布関数を形成してボルツマン解法へ受け渡す方法と、逆に分子速度分布関数から有限個の粒子群を形成する方法の研究開発が必要である。そこで、今年度は有限個の粒子群から分布関数を形成する方法を取り上げ、マルチタイムスケールを用いた集積化、代表粒子を用いた粗視化、数値積分を用いた平滑化、予め作成したデータベースを用いるモデル化など、様々な手法の考案および検討を行った。 2)マルチタイムスケール時間進行法 ナビエ・ストークス解法にボルツマン解法および分子動力学解法を結合する完全統合解法においては、物理空間スケールおよび時間スケールが大きく異なる解法を並列して同時に使用するので、計算効率の点では、逆に大きく異なる物理空間スケールや時間スケールを有効に利用する方策を研究開発することが重要である。そこで、今年度は大きく異なる時間スケールに着目し、異なる時間スケールの解法を並走させるマルチタイムスケール時間進行法や、異なる空間スケールにも着目した時間-空間マルチスケール進行法、予め作成したデータベースを用いて発展過程のショートカットを目指した飛び進行法など、様々な手法の考案および検討を行った。
|