研究概要 |
本研究は、従来の考え方と異なり、トカマクのディスラプション時に印加した高周波加熱や電流駆動により効率よく逃走電子電流を生成しプラズマ電流をこれで置き換え、電流の急激な低下を抑制しアストロン・スフェレータ配位実現の可能性を探る。超伝導トカマクHT-7(中国科学院等離子体物理研究所)を使用し、トロイダル磁場Bt^-1.5T,プラズマ電流^-140kA、線平均電子密度^-1.5×10^<19>m^<-3>の重水素プラズマにおいて、ディラプションの約50ms前から低域混成波電流駆動(LHCD)を行なった場合とそうでない場合とで放電特性を比較した。LHCDとディラプションの初期の電流減少に伴う高いループ電圧増加(^-10V)との相互作用で効率よく逃走電子が生成され、ディスラプション前のプラズマ電流にほぼ相当する電流が逃走電子電流に置き換わり、プラズマ電流の低下が抑制された。また、硬X線放射強度の径方向分布は、逃走電子電流密度分布のコア部への集中を示した。このような逃走電子電流密度分布は、理論シミュレーションと定性的に一致し、プラズマ中心部に高エネルギーの逃走電子による逃走電子電流が存在するトカマクプラズマの生成が実現されたものと考えられる。今後、逃走電子電流で維持されたプラズマに大電力イオンサイクロトロン波加熱を行い、そのMHD安定性と閉じ込め特性を明らかにする研究を継続し、大型トカマクへの適用の可能性を探る。
|