• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実績報告書

超低消費電力シングルナノメータスケールグラフェントンネルトランジスタ

研究課題

研究課題/領域番号 18F18365
研究機関北陸先端科学技術大学院大学

研究代表者

水田 博  北陸先端科学技術大学院大学, 先端科学技術研究科, 教授 (90372458)

研究分担者 HAMMAM AHMED  北陸先端科学技術大学院大学, 先端科学技術研究科, 外国人特別研究員
研究期間 (年度) 2018-11-09 – 2021-03-31
キーワードグラフェン / トンネルトランジスタ / ナノイオンビーム / サブサーマルスイッチング
研究実績の概要

To fabricate a suspended sub-10 nm Graphene Nanoribbons (GNRs), we first fabricated sub-100 nm-wide GNRs width) using EBL-RIE technique. Motorized HF wet etching process followed by supercritical point drying was developed to remove a supporting SiO2 layer. The helium ion beam milling (HIBM) process was then conducted with ion beam current of 1 pA and dose of of 1.1E18 ions/cm2, and an extremely thin GNR of around 6 nm in width was fabricated successfully. Electrical characteristics were measured using a cryogenic probestation, as a function of temperature ranging from 4.2 K to room temperature. We observed for the 6-nm thin GNR device the nonlinear current-voltage characteristics at room temperature with transport gap opening, Eg, of approximately 0.41 eV. This is in clear contrast that a wide GNR device before HIBM showed linear characteristics with zero transport gap. Simulation was also conducted using ab initio simulation package ATK for different degree of edge roughness to understand the device characteristics, and the experimentally observed Eg variation was justified successfully.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

In order to investigate the physical mechanism behind the observed transport gap opening, multiple single-nanometer GNRs were fabricated and the temperature dependence of Eg was measured for those devices. A finite variation of Eg ranging from 160 to 800 meV was observed at room temperature. The ab-initio simulation was then conducted to evaluate the Eg for various possible edge structures (mixture of zig-zag and armchair edge structures), and the experimentally observed Eg variation was justified successfully. These in-depth analyses are beyond the original research plan.

今後の研究の推進方策

The GNR-TFETs are fabricated by using single-nanometer suspended GNRs covered with h-BN, two local bottom gates and one top control gate, and ALD Al2O3 dielectric for encapsulation. On the same graphene, multiple GNR channels are fabricated in different directions which enables us to compare the impacts of various mixture of arm-chair and zigzag edge states. Temperature dependence of SS is measured, and the achieved bandgaps Eg are extracted and analyzed in comparison with the simulation results on the Eg - T dependence obtained for different edge states.EBL resist and CR chemicals are purchased. The ATK licenses fee for ab initio simulation and travelling costs are budgeted for the HIM experiment at AIST and conference trips to JSAP and SSDM.

  • 研究成果

    (4件)

すべて 2020 2019

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (3件)

  • [雑誌論文] Dielectric-Screening Reduction Induced Large Transport Gap in Suspended Sub-10-nm Graphene Nanoribbon Functional Devices2019

    • 著者名/発表者名
      Marek E. Schmidt, Manoharan Muruganathan, Teruhisa Kanzaki, Takuya Iwasaki, Ahmed M. M. Hammam, Shunei Suzuki, Shinichi Ogawa, Hiroshi Mizuta
    • 雑誌名

      Small

      巻: 15 ページ: 1903025(1-7)

    • DOI

      10.1002/smll.201903025

    • 査読あり / 国際共著
  • [学会発表] Graphene PN junction formation by asymmetric work function of metal contacts2020

    • 著者名/発表者名
      Ahmed Hammam, Manoharan Muruganathan, Hiroshi Mizuta
    • 学会等名
      第67回応用物理学会春季学術講演会
  • [学会発表] Trench-type bottom gate graphene resonator: Fabrication and Characterization2020

    • 著者名/発表者名
      Atsushi Furukawa, Hiroya Miyashita, Ahmed Hammam, Manoharan Muruganathan, Hisashi Maki, Hiroshi Mizuta
    • 学会等名
      第67回応用物理学会春季学術講演会
  • [学会発表] Fabrication and evaluation of bottom gate graphene resonator2020

    • 著者名/発表者名
      Hiroya Miyashita, Atsushi Furukawa, Amit Banerjee, Ahamed Hammam, Manoharan Muruganathan, Hisashi Maki, Hiroshi Mizuta
    • 学会等名
      第67回応用物理学会春季学術講演会

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi