• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 実績報告書

理論計算機科学分野におけるCSP、および組合せ最適化問題におけるTSP問題

研究課題

研究課題/領域番号 18F18746
研究機関国立情報学研究所

研究代表者

河原林 健一  国立情報学研究所, 情報学プリンシプル研究系, 教授 (40361159)

研究分担者 FULLA PETER  国立情報学研究所, ビッグデータ数理国際研究センター, 外国人特別研究員
研究期間 (年度) 2018-11-09 – 2021-03-31
キーワードgraph / matroid / CSP
研究実績の概要

Valuated delta-matroids (VDM) are combinatorial structures generalizing better-known weighted matroids. The parity problem asks for a basis of a VDM with the minimum value subject to additional parity requirements. If the VDM is given by a direct sum of constant-size VDM, the complexity of the parity problem remains open. The special case when all the bases are assigned the same value was shown to be tractable in polynomial time by Kazda, Kolmogorov, and Rolinek (KKR) in a SODA'17 paper.
We extended the KKR algorithm to allow for arbitrary values of bases. Our algorithm also runs in polynomial time, but a number of assumptions on structural properties of VDM is required in order to establish its correctness.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We extended the KKR algorithm, as above, to allow for arbitrary values of bases. Our algorithm also runs in polynomial time, but a number of assumptions on structural properties of VDM is required in order to establish its correctness. We proved the validity of these assumptions individually; it remains to show that they also hold all combined.

Therefore, we are close to fnish the main thing in this area. We plan to consolidate the established structural properties of VDM in order to complete the proof of correctness of the candidate algorithm.

今後の研究の推進方策

The 3-colouring problem is classic member of the NP-complete class. We are considering an approximation variant in which the given graph is guaranteed to be 3-colourable and the task is to colour it in polynomial time using "few" colours. Previous approaches to this problem can be broadly divided into combinatorial algorithms and those employing semidefinite programming (SDP). The
state-of-the-art combinatorial algorithm by Kawarabayashi and Thorup uses asymptotically n^(4/11) colours (where n is the number of vertices). Our goal is to improve on this bound. We explored potential improvements in the individual components of the current algorithm. If we can show that all the affected assumptions remain valid, this will yield a decrease in the number of used colours.

  • 研究成果

    (1件)

すべて 2018

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件)

  • [雑誌論文] The Complexity of Boolean Surjective General-Valued CSPs2018

    • 著者名/発表者名
      Fulla Peter、Uppman Hannes、Zivny Stanislav
    • 雑誌名

      ACM Transactions on Computation Theory

      巻: 11 ページ: 1~31

    • DOI

      10.1145/3282429

    • 査読あり / 国際共著

URL: 

公開日: 2019-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi