研究実績の概要 |
一般化された複素構造および一般化されたケーラー構造は通常の複素構造, シンプレクティック構 造を特別な場合として含む多様体の幾何構造である. ポアソン幾何, ノンケーラー幾何(双エル ミート幾何), 非可換代数幾何, 幾何学的偏微分方程式, 実4次元の微分トポロジーなど, 様々な分 野と深く関連しており, この研究分野の最近の大きな進展が注目されている. 研究代表者の研究により, 一般化されたケーラー多様体の変形安定性定理が確立され, 非自明な一般 化されたケーラー多様体が正則なポアソン構造により豊富に構成されることが示され, この分野 の研究が急速に進展した. 一方, 近年, ケーラー・アインシュタイン幾何学において, Yau-Tian- Donaldson 予想(YTD 予想)がファノ多様体に関して解決され顕著な発展が起こっている. 今年度においては、一般化されたケーラー多様体のスカラー曲率の研究をさらに推進し、また一般化された接触構造及び一般化された佐々木構造の研究を進めた。藤木・ドナルドソンによるスカラー曲率をモーメントマップとして捉える「moment map picture」を研究代表者は一般化されたケーラー多様体にも拡張したが、この一般化されたケーラー多様体のスカラー曲率を標準束の自明化に依らない形で再定式化を行った。また一般化された接触構造の積分可能条件に関してシリンダー型とコーン型の2種類あることを明解にし、これらの研究を行った。これらの成果は2023年4月にStony Brook University, Simons center で開催された研究集会 Supergravity, Generalized Geometry and Ricci Flow にて発表した。
|