生体分子を材料とする人工的な分子反応システムのダイナミクスを,数理モデルを用いて解析・設計するための理論的な枠組み,およびそのモデル構築に必要なデータを効率的に取得する実験系を構築し,分子システム設計に応用することで有用性を示した.特に,物理法則から導かれる第一原理モデルを,実験データから学習される機械学習モデルで補完する方法を提案し,第一原理モデルだけでは捉えることが難しい複雑な反応環境場の影響を考慮した反応予測モデルを構築した.また,反応環境場がわずかずつ異なる系を大量に生成してモデルの同定に利用するためのマイクロ流体実験系を構築し,その有用性を検証した.
|